evaluate this.......
Attachments:
Anonymous:
was this helpful?
Answers
Answered by
2
heya
______________________________
R.H.L
lim √( 1 + 0 + h ) - 1 / ( 0 + h )
h–>0
=>
lim √( 1 + h ) -1 / ( h )
h–>0
USING L'HOSPITALS RULE
lim 1/2√( 1 + h )
h–>0
= 1/2
L.H.L
lim √( 1 + 0 - h ) - 1/ ( 0 - h )
h–>0
=>
lim √( 1 - h ) / ( - h )
h–>0
=>
USING L'HOSPITALS RULE
lim -1/2√{1 - h }
h–>0
= -1/2
L.H.L ≠ R.H.L
So, limit doesn't exist.
______________________________
R.H.L
lim √( 1 + 0 + h ) - 1 / ( 0 + h )
h–>0
=>
lim √( 1 + h ) -1 / ( h )
h–>0
USING L'HOSPITALS RULE
lim 1/2√( 1 + h )
h–>0
= 1/2
L.H.L
lim √( 1 + 0 - h ) - 1/ ( 0 - h )
h–>0
=>
lim √( 1 - h ) / ( - h )
h–>0
=>
USING L'HOSPITALS RULE
lim -1/2√{1 - h }
h–>0
= -1/2
L.H.L ≠ R.H.L
So, limit doesn't exist.
Answered by
1
welcome to the concept of limits .
⏩yr answer is 1/2
⏩I hope it help you ❤️
Attachments:
Similar questions