Evaluate using identity :
(i) x^3(y-z)^3 + y^3 (z-x) ^3 + z^3(x-y)^3
Answers
Answered by
1
**********************
If a+b+c=0
then
a³+b³+c³ = 3abc
***********************
x^3(y-z)^3 + y^3 (z-x) ^3 + z^3(x-y)^3
=[x(y-z)]³+[y(z-x)]³+[z(x-y)]³
Here,
a=x(y-z), b = y(z-x),c=z(x-y)
Now,
a+b+c
=x(y-z)+y(z-x)+z(x-y)
=xy-xz+yz-xy+xz-yz
=0
[x(y-z)]³+[y(z-x)]³+[z(x-y)]³
3[x(y-z)][y(z-x)][z(x-y)]
••••
akshitabaliyan:
Thanks!
Similar questions