Math, asked by rumavishodia, 9 months ago

evaluate using suitable identities

(iv) 211 x 189 – 106 x 93

please answer step by step​

Answers

Answered by tanukushwaha1380
3

Answer:

Answer:

211\times 189-106\times 93=30021211×189−106×93=30021

Step-by-step explanation:

Given : Expression 211\times 189-106\times 93211×189−106×93

To find : Evaluate using suitable identities ?

Solution :

Expression 211\times 189-106\times 93211×189−106×93

First we split the terms,

=(200+11)\times (200-11)-(100+6)\times 93=(200+11)×(200−11)−(100+6)×93

Applying identity the difference of two terms in first two terms,

(a+b)(a-b)=a^2-b^2(a+b)(a−b)=a

2

−b

2

Applying identity distributive in last two terms,

(a+b)c=ac+bc(a+b)c=ac+bc

=(200)^2-(11)^2-100\times 93+6\times 93=(200)

2

−(11)

2

−100×93+6×93

=40000-121-9300+558=40000−121−9300+558

=39879-9858=39879−9858

=30021=30021

Therefore, 211\times 189-106\times 93=30021211×189−106×93=30021

Answered by 921354
1

Answer:

211\times 189-106\times 93=30021211×189−106×93=30021

Step-by-step explanation:

Given : Expression 211\times 189-106\times 93211×189−106×93

To find : Evaluate using suitable identities ?

Solution :

Expression 211\times 189-106\times 93211×189−106×93

First we split the terms,

=(200+11)\times (200-11)-(100+6)\times 93=(200+11)×(200−11)−(100+6)×93

Applying identity the difference of two terms in first two terms,

(a+b)(a-b)=a^2-b^2(a+b)(a−b)=a

2

−b

2

Applying identity distributive in last two terms,

(a+b)c=ac+bc(a+b)c=ac+bc

=(200)^2-(11)^2-100\times 93+6\times 93=(200)

2

−(11)

2

−100×93+6×93

=40000-121-9300+558=40000−121−9300+558

=39879-9858=39879−9858

=30021=30021

Therefore, 211\times 189-106\times 93=30021211×189−106×93=30021

Step-by-step explanation:

Similar questions