Math, asked by ACHAL200611, 4 months ago

Evaluate (x-1/x) (x+1/x) (x²+1/x²) (x^4+1/x^4)

Answers

Answered by mathdude500
2

\large\underline\blue{\bold{Given \:  Question :-  }}

\bf \:Evaluate \: \bigg(x - \dfrac{1}{x}  \bigg)\bigg( x + \dfrac{1}{x} \bigg)\bigg( {x}^{2}  + \dfrac{1}{ {x}^{2} }  \bigg)\bigg(  {x}^{4} + \dfrac{1}{ {x}^{4} }

─━─━─━─━─━─━─━─━─━─━─━─━─

\huge{AηsωeR} ✍

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\Large{\bold{\pink{\underline{Formula \:  Used \::}}}}  \end{gathered}

\sf \:  ⟼(1). \:  (x + y)(x - y) = {x}^{2}  -  {y}^{2}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\purple{\bold{Solution :-  }}

\sf \:   \bigg(x - \dfrac{1}{x}  \bigg)\bigg( x + \dfrac{1}{x} \bigg)\bigg( {x}^{2}  + \dfrac{1}{ {x}^{2} }  \bigg)\bigg(  {x}^{4} + \dfrac{1}{ {x}^{4}  } \bigg)

\sf \:   = \bigg(  {x}^{2}   -  \dfrac{1}{ {x}^{2} } \bigg)\bigg( {x}^{2}  + \dfrac{1}{ {x}^{2} }  \bigg)\bigg(  {x}^{4} + \dfrac{1}{ {x}^{4} } \bigg)

☆[using identity in first two brackets]

\sf \:   = \bigg(  ({ {x}^{2}  })^{2} - \dfrac{1}{( { {x}^{2} })^{2} }  \bigg)\bigg( {x}^{4}   + \dfrac{1}{ {x}^{4} } \bigg)

\sf \:   = \bigg( {x}^{4}    -  \dfrac{1}{ {x}^{4} }  \bigg)\bigg(  {x}^{4} + \dfrac{1}{ {x}^{4} } \bigg)

\sf \:   = \bigg(  ({ {x}^{4}  })^{2} - \dfrac{1}{( { {x}^{4} })^{2} }  \bigg)

\sf \:   =  {x}^{8}  - \dfrac{1}{ {x}^{8} }

─━─━─━─━─━─━─━─━─━─━─━─━─

\large \red{\bf \:  ⟼ Explore \:  more } ✍

─━─━─━─━─━─━─━─━─━─━─━─━─

\sf \:  ⟼ \: (a + b)^{2} = {a}^{2} + {b}^{2} + 2ab

\sf \:  ⟼(a - b)^{2} = {a}^{2} + {b}^{2} - 2ab

\sf \:  ⟼(a + b)(a - b) = {a}^{2} - {b}^{2}

\sf \:  ⟼(a + b + c)^{2} = {a}^{2} + {b}^{2} + {c}^{2}  + 2ab + 2bc + 2ca</p><p>

\sf \:  ⟼(a - b) ^{3} = {a}^{3} - b^{3} - 3ab(a - b) \\ \sf \:  ⟼(a  +  b) ^{3} = {a}^{3}  +  b^{3}  +  \: 3ab(a  +  b)

\sf \:  ⟼a ^{3} + {b}^{3} = (a + b)(a ^{2} + {b}^{2} - ab) \\ \sf \:  ⟼a ^{3} - {b}^{3} = (a - b)(a ^{2} + {b}^{2} + ab)</p><p>

─━─━─━─━─━─━─━─━─━─━─━─━─

Similar questions