Math, asked by farooqui1971, 10 months ago

evaluate x^2+99x+127​

Answers

Answered by kaynat87
6

evaluate \:  {x}^{2} + 99x  \: + 127

solution \:  >  >  >

let \: given \: quadratic \: polynomial \: be \:

p(x) =  {x}^{2}  + 99x + 127

on \: comparing \: p(x) \: with \: a {x}^{2}  + by + c \: we \: get \: a = 1 \:  \: b = 99 \: and \: c = 127

we \: know \: that \:  \:  \:  \:x =  \frac{ - b \binom{ +  }{ - }  \sqrt{ {b }^{2}  - 4ac} }{2a}  ({ \: by \: quadratic \: formula})

 =  \frac{ - 99 \binom{ + }{ - }  \sqrt{ {99}^{2} - 4 \times 1 \times 127 } }{2 \times 1}

 =  \frac{ - 99 \binom{ + }{ - } \sqrt{9801 - 508}  }{2}

  = \frac{ - 99 \binom{ + }{ - } \sqrt{9293}  }{2}

 =  \frac{ - 99 \binom{ + }{ - } 964}{2}

 =  \frac{ - 99 + 96.4}{2 \: }  \: and \:  \frac{ - 99 - 96.4}{2}

 =  \frac{2.6}{2}  \: and \:  \frac{ - 195.4}{2}

 = 1.3 \: and \:  - 97.7

 hence \: both \: zeroes \: of \: the \: given \: quadratic \: polynomial \: p(x) \: are \: negative \:

THIS ANSWER IS ALSO ATTACHED ABOVE

U CAN ALSO CHECK THAT

MARK ME AS BRAINLIEST

HIT THNX and FOLLOW ME

Attachments:
Similar questions