Math, asked by Cinmay5063, 18 days ago

evaluate x and y in each of the figures given below.​

Attachments:

Answers

Answered by sumitkumar25june
1

Answer:

x = 5 \\ y = 6

may it help u

may it help u

may it help u

may it help u

Answered by ItzBrainlyLords
5

\huge \red \star \large \green \star \tiny \orange \star \huge \underline{ \boxed{ \red{ \frak{s}} \frak{ \orange{o} \blue{lu} \pink{t} \green{io} \red{n}}}} \tiny \orange \star \large \green \star \huge \red \star

✪ Given :

  • AB = 17cm
  • DO = 19cm
  • AO = OC
  • ∠DOC = ∠AOB
  • ∠OAB = ∠OCD

✪ To Find :

  • (3x + 2)cm
  • (2y + 7)cm

✪ Solving :

In △AOB and △DOC :

  • ∠DOC = ∠AOB (Given)
  • AO = OC (Given)
  • ∠OAB = ∠OCD (Given)

 \large  \sf\mapsto \pink{   \: therefore \:   \: △AOB  \cong △DOC \: (a.s.a)}

A.S.A - Angle,Side,Angle congruence condition

  • AB = DC (c.p.c.t) ____(1)
  • DO = OB (c.p.c.t)_____(2)

➜ From (1) :

  • AB = DC = 17cm
  • AB = 3x + 2

 \large \red \implies \sf \: (3x + 2) = 17cm

⍟ On Transposing The Terms :

 \large \red \implies \sf \: 3x = 17 - 2cm \\  \\  \large \red \implies \sf \: x =  \frac{15}{3} cm

  \\  \large \therefore \red{ \underline{ \boxed{ \tt{ \green{x = 5cm}}}}}

Check :

(3x + 2 )cm= 17cm

3(5) + 2cm = 17cm

⇒ 15 + 2cm = 17cm

17cm = 17cm

L.H.S = R.H.S

Hence Proved

➜ From (2) :

  • DO = OB = 19cm
  • OB = (2y + 7)cm

 \large \red \implies \sf \: (2y + 7) = 19cm \\  \large \red \implies \sf \: 2y = 19 - 7cm \\  \\  \large \red \implies \sf \: y =  \frac{12cm}{2}

  \\  \large \therefore \red{ \underline{ \boxed{ \tt{ \green{y = 6cm}}}}}

Check :

(2y + 7)cm = 19cm

2(6) + 7cm = 19cm

⇒ 12 + 7cm = 19cm

19cm = 19cm

L.H.S = R.H.S

Hence Proved

Similar questions