English, asked by vikashjain4, 1 year ago

Evaluate:- z = log(base √7 ) [ { √(8 + √28 )} - 1 ] .​

Answers

Answered by amt54321
0

Answer:

z = {(sqrt(8 + 2 sqrt(7)) - 1) log(2.646 bp (base pairs))}

Explanation:

Answered by Anonymous
11

Answer:

→ z = 1.

Explanation:

 \sf \because z =   log_{ \sqrt{7} }(( \sqrt{8 +  \sqrt{28} } ) - 1)  .

Now, we have

 \sf \because \sqrt{8 +  \sqrt{28} } . \\  \\  \sf =  \sqrt{8 + 2 \sqrt{7} } . \\  \\  \sf =  \sqrt{ {( \sqrt{7}) }^{2} +  {1}^{2} + 2(1)( \sqrt{7}   )} . \\  \\  \sf =  \sqrt{ {( \sqrt{7}  + 1)}^{2} } . \\  \\  \sf =  | \sqrt{7 + 1} | . \\  \\  \sf = ( \sqrt{7}  + 1).

Now,

 \sf \because z =   log_{ \sqrt{7} }(( \sqrt{8 +  \sqrt{28} } ) - 1)  . \\  \\  \implies \sf  z =   log_{ \sqrt{7} }( \sqrt{7} + 1 - 1)  . \\  \\  \implies  \sf z =  log_{ \sqrt{7} }( \sqrt{7} ) . \\  \\  \implies \sf { \sqrt{7} }^{z}  =  \sqrt{7} . \\  \\  \boxed{ \therefore \it \pink{ z = 1.}}

Hence, it is solved.


vikashjain4: Thanks sir
Similar questions