Math, asked by mdsalik43, 8 months ago

Evaluates cos² theta tan² theta + tan² theta sin² theta in terms of tan theta​

Answers

Answered by mysticd
4

 Value \: of \: cos^{2} \theta tan^{2} \theta + tan^{2} \theta sin^{2} \theta

 = tan^{2} \theta (cos^{2} \theta +  sin^{2} \theta)

 = tan^{2} \theta \times 1

/*By Trigonometric Identity*/

 \boxed{\pink{ cos^{2} \theta +  sin^{2} \theta= 1}}

 = tan^{2} \theta

Therefore.,

 \red{Value \: of \: cos^{2} \theta tan^{2} \theta + tan^{2} \theta sin^{2} \theta}\green { = tan^{2} \theta }

•••♪

Answered by Anonymous
6

ANSWER

\large\underline\bold{GIVEN,}

\dashrightarrow Value \: of \: cos^{2} \theta tan^{2} \theta + tan^{2} \theta sin^{2} \theta

✯.TO EVALUATE IN TERMS OF TAN ∅

IDENTITY IN USE,

\large{\boxed{\bf{ \star\:\:cos\theta+sin\theta= 1 \:\: \star}}}

\implies \: cos^{2} \theta tan^{2} \theta + tan^{2} \theta sin^{2}

\implies tan^2 \theta \bigg( cos^2 \theta +sin^2 \theta \bigg)

\implies tan^2 \theta \times 1 \:---\boxed{ from\:given\:identity.}

\implies tan^2\theta

\large{\boxed{\bf{ \star\:\: cos^{2} \theta tan^{2} \theta + tan^{2} \theta sin^{2} \theta= tan^2 \theta\:\: \star}}}

HENCE DONE✔

_____________

Similar questions