Math, asked by ghfyraa55, 7 months ago

evalute sin( 2sin-1(0.6)) ​

Answers

Answered by Anonymous
14

\;\;\underline{\textbf{\textsf{ Given:-}}}

 \bf\sin \{2\sin^{ - 1}(0.6) \}

\;\;\underline{\textbf{\textsf{ To Find :-}}}

• Value of  \bf\sin \{2\sin^{ - 1}(0.6) \}

\;\;\underline{\textbf{\textsf{ Solution :-}}}

\underline{\:\textsf{  Let  the  function  be  :}}

 \bf \dashrightarrow  y = \sin \{2\sin^{ - 1}(0.6) \}

\underline{\:\textsf{ As we know that   :}}

 \bf \dashrightarrow  2\sin^{ - 1}(x)  = { \sin }^{ - 1}(2x \sqrt{1 -  {x}^{2} })

\underline{\:\textsf{ Therefore  :}}

 \bf  \dashrightarrow y = \sin \{\sin^{ - 1} \{2(0.6) \sqrt{1 -  {(0.6)}^{2} }  \} \}

 \bf  \dashrightarrow y = \sin \{\sin^{ - 1} \{(1.2) \sqrt{1 - 0.36 }  \} \}

 \bf \dashrightarrow  y = \sin \{\sin^{ - 1} \{(1.2) \sqrt{0.64}\} \}

 \bf \dashrightarrow  y = \sin \{\sin^{ - 1} \{(1.2) \sqrt{0.8 \times 0.8}\} \}

 \bf \dashrightarrow  y = \sin \{\sin^{ - 1} \{(1.2) (0.8) \}

 \bf  \dashrightarrow y = \sin \{\sin^{ - 1} \{(0.96) \}

\;\;\underline{\textbf{\textsf{ Hence-}}}

\underline{\textsf{ Value of y  is  \textbf{0.96 }}}.

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Answered by shahkhushee700
0

Step-by-step explanation:

we have

sin2sin^-1 *X=sin^-1(2X√1-X^2)

so ,

sin(sin^-1(2*0.6√1-0.6^2)

=sin(sin^-10.96)

=0.96

is the correct answer...

hope it helps you....

Similar questions