Math, asked by ayushsengar18124, 3 months ago

Evalute : Sin [π/3 - Sin-'(-1/2)]​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:sin\bigg(\dfrac{\pi}{3}  -  {sin}^{ - 1}\bigg( - \dfrac{1}{2} \bigg)  \bigg)

 \:  \:  \:  \:  \:  \:  \: {\bigg \{ \because \: \sf \:  {sin}^{ - 1}( - x) =  -  {sin}^{ - 1}x \bigg \}}

\rm \rm \:  =  \:  \: \:\:sin\bigg(\dfrac{\pi}{3}  + {sin}^{ - 1}\bigg(\dfrac{1}{2} \bigg)  \bigg)

\rm \rm \:  =  \:  \: \:\:sin\bigg(\dfrac{\pi}{3}  + {sin}^{ - 1}\bigg(sin\dfrac{\pi}{6} \bigg)  \bigg)

{\bigg \{ \because \:  \sf \:  {sin}^{ - 1}(sinx) = x \:  \: if \: x \in \: \bigg[ - \dfrac{\pi}{2} ,\dfrac{\pi}{2}  \bigg] \bigg \}}

\rm \:  =  \:  \: \:sin\bigg(\dfrac{\pi}{3} + \dfrac{\pi}{6}  \bigg)

\rm \:  =  \:  \: \:sin\bigg(\dfrac{2\pi + \pi}{6} \bigg)

\rm \:  =  \:  \: \:sin\bigg(\dfrac{3\pi}{6} \bigg)

\rm \:  =  \:  \: \:sin\bigg(\dfrac{\pi}{2} \bigg)

\rm \:  =  \:  \: \:1

Hence,

\bf :\longmapsto\:sin\bigg(\dfrac{\pi}{3}  -  {sin}^{ - 1}\bigg( - \dfrac{1}{2} \bigg)  \bigg)  = 1

Additional information :-

\rm :\longmapsto\: {cos}^{ - 1}(cosx) = x \:  \: if \: x \:  \in \: \bigg[0, \: \pi\bigg]

\rm :\longmapsto\: {tan}^{ - 1}(tanx) = x \:  \: if \: x \:  \in \: \bigg( - \dfrac{\pi}{2} , \dfrac{\pi}{2}\bigg)

\rm :\longmapsto\: {sin}^{-1}x+{sin}^{ - 1}y ={sin}^{-1}\bigg(x \sqrt{1-{y}^{2}} + y\sqrt{1-{x}^{2} }\bigg)

\rm :\longmapsto\: {sin}^{-1}x - {sin}^{ - 1}y ={sin}^{-1}\bigg(x \sqrt{1-{y}^{2}} -  y\sqrt{1-{x}^{2} }\bigg)

\rm :\longmapsto\: {cos}^{-1}x - {cos}^{ - 1}y ={cos}^{-1}\bigg(xy + \sqrt{1-{y}^{2}} \sqrt{1-{x}^{2} }\bigg)

\rm :\longmapsto\: {cos}^{-1}x + {cos}^{ - 1}y ={cos}^{-1}\bigg(xy - \sqrt{1-{y}^{2}} \sqrt{1-{x}^{2} }\bigg)

Similar questions
Math, 10 months ago