Math, asked by pavanl10lgs100u0031, 5 months ago

Evalute (sin tita+cos tita)²-(sin tita-cos tita)²​

Answers

Answered by Anonymous
2

Solution:-

 \rm \to \: ( \sin \theta +  \cos \theta) ^{2}  - ( \sin \theta -  \cos  \theta)^{2}

Using Identities

 \rm \to \: (a + b)^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab \\  \rm \to(a  - b)^{2}  =  {a}^{2}  +  {b}^{2}  - 2ab

By using this identities

 \rm \to \: ( \sin {}^{2}  \theta +  \cos {}^{2}  \theta + 2 \sin \theta \cos \theta) - (sin {}^{2}  \theta +  \cos {}^{2}  \theta  -  2 \sin \theta \cos \theta)

Now using trigonometric identity

 \rm \to \: sin {}^{2}  \theta +  \cos {}^{2}  \theta  = 1

 \rm \to \: 2 \sin \theta  \cos \theta =  \sin2 \theta

We get

 \rm \to \: (1 +  \sin2 \theta) - (1 -  \sin2 \theta)

 \rm \to \: 1 +  \sin2 \theta - 1 +  \sin 2\theta

 \rm \to \: 2 \sin2\theta

Answer

\rm \to \: 2 \sin2\theta

Similar questions