Math, asked by princess467, 5 months ago

evauluate the integral of int (cos⁴x-sin⁴x/cosx-sinx)dx

Answers

Answered by mathdude500
2

Answer:

Question:-

\bf \:Evaluate : ∫\dfrac{ {cos}^{4} x -  {sin}^{4} x}{cosx - sinx} dx

Answer

Identity used :-

\bf \: {x}^{4}  -  {y}^{4}  = (x - y)(x + y)( {x}^{2}  +  {y}^{2} )

\bf \: {sin}^{2} x +  {cos}^{2} x = 1

\bf \: ∫sinx \: dx =  - cosx + c

\bf \: ∫cosx \: dx = sinx + c

Solution:-

\bf \:∫\dfrac{ {cos}^{4} x -  {sin}^{4} x}{cosx - sinx} dx

\bf\implies \:∫\dfrac{ (cosx - sinx)(cosx + sinx)({sin}^{2} x  +  {cos}^{2} x)}{cosx - sinx} dx

\bf\implies \: ∫(sinx + cosx)dx

\bf\implies \: ∫sinx \: dx +  ∫cosx \: dx

\bf\implies \: - cosx \:  + sinx + c

____________________________________________

Similar questions