Math, asked by ncop9732, 4 months ago

ex 10.5 and 10.4 handwritten​

Answers

Answered by KarunyaPatiye
0

Step-by-step explanation:

Given:-

Radius of circular park = 20m

Let 3 boys be denoted by points A, S and D

AS = SD = AD

ToFind:-

Length of string of each phone

Solution:-

Let AS = SD = AD = 2x

In ASD all sides are equal

So, ASD is equilateral triangle

We draw OP ⊥ SD

\rm\implies \: SP = DP = \frac{1}{2}SD⟹SP=DP=

2

1

SD

\rm\implies \:SP = DP = \frac{2x}{2} = x⟹SP=DP=

2

2x

=x

Join OS and AO

★ In ∆OPS

(By phythagoras theorem)

\rm\implies \:OS^2 = OP^2 + PS^2⟹OS

2

=OP

2

+PS

2

\rm\implies \:20^2 = OP^2 + x^2⟹20

2

=OP

2

+x

2

\rm\implies \:400 - x^2 = OP^2⟹400−x

2

=OP

2

\rm\implies \:OP^2 = 400 - x^2⟹OP

2

=400−x

2

\rm\implies \:OP = \sqrt{400 - x^2}⟹OP=

400−x

2

★ In ∆APS

(By phythagoras theorem)

\rm\implies \:AS^2 = AP^2 + PS^2⟹AS

2

=AP

2

+PS

2

\rm\implies \:2x^2 = AP^2 + x^2⟹2x

2

=AP

2

+x

2

\rm\implies \:4x^2 - x^2 = AP^2⟹4x

2

−x

2

=AP

2

\rm\implies \:AP = \sqrt{3}x⟹AP=

3

x

★ Now,

\rm\implies \:AP = AO + OP⟹AP=AO+OP

\rm\implies \:\sqrt{3}x=20-\sqrt{400-x^2}⟹

3

x=20−

400−x

2

\rm\implies \:\sqrt{400-x^2} = \sqrt{3}x-20⟹

400−x

2

=

3

x−20

★ Squaring on both sides

\rm\implies \:(\sqrt{400-x^2} )^2 = (\sqrt{3}x-20)^2⟹(

400−x

2

)

2

=(

3

x−20)

2

\rm\implies \:400-x^2 = (\sqrt{3}x)^2+(20)^2 - 2 \times (\sqrt{3}x)\times 20⟹400−x

2

=(

3

x)

2

+(20)

2

−2×(

3

x)×20

\rm\implies \:4x^2 = 40\sqrt{3}x⟹4x

2

=40

3

x

\rm\implies \:x = 10\sqrt{3}m⟹x=10

3

m

\rm\therefore\:AS = SD = AD = 2x=2\times 10\sqrt{3}= {\rm{\pink{20\sqrt{3}m}}}∴AS=SD=AD=2x=2×10

3

=20

3

m

★ Hence,

\rm{Length \:of \:string \:of \:each \:phone\: is \:20\sqrt{3}m}Lengthofstringofeachphoneis20

3

m

Similar questions