Math, asked by Anonymous, 4 months ago

Examine the consistency of the system of equation

1. x + 2y = 2
2x + 3y = 3

Note :- Solve by Matrix Method ( Gauss - Jordan Method)​

Answers

Answered by Anonymous
58

Explanation:

The given system of equation is,

\tt x + 2y = 2  \\ \tt 2x + 3y = 3

The given system of equations can be written in the form of AX = B, Where,

 \tt \green{ A =  \tt{\begin{bmatrix}1 & 2 \\2 & 3 \end{bmatrix}} \:, \: \:  X =   {\begin{bmatrix}  x \\ y \end{bmatrix}} \:  \: and \:  \: B = {\begin{bmatrix}  2 \\ 3 \end{bmatrix}}}

Now,

 \rightarrow \tt \: |A| = 1 \times 3 - 2  \times 2 \\  \\ \rightarrow \tt \: |A| =3 - 4 \\  \\ \rightarrow \tt \red{|A| = - 1}

 \tt \therefore \: \:  A \:  \: is \:  \: non - singular.

 \tt \:  \therefore \:  \: A {}^{ - 1}  \: exists.

 \underline{ \bold{ \: Hence, \: the \: given \: system \: of \: equations \: is \: consistent.}}

Answered by tarracharan
2

\tt{\:x + 2y =2}

\tt{\:2x + 3y =3}

Write equation AX = B

\left[ \begin{array}{c c}\tt 1 & \tt 2 \\\tt 2 & \tt 3\end{array}\right] \left[ \begin{array}{c}\tt x \\ \tt y\end{array}\right] = \left[ \begin{array}{c} \tt 2 \\ \tt 3\end{array} \right]

Hence,

A = \left[ \begin{array}{c c}\tt 1 & \tt 2 \\ \tt 2 & \tt 3\end{array} \right] , B = \left[ \begin{array}{c}\tt x \\ \tt y\end{array} \right] , C = \left[ \begin{array}{c} \tt 2 \\ \tt 3\end{array}\right]

\:

|A| = \left| \begin{array}{c c}1 & 2 \\ 2 &3\end{array}\right|

= (1 × 3) - (2 × 2) = -1 0

Since, |A| ≠ 0

The system of equations is consistent.

Similar questions