Math, asked by vgkanpur, 4 months ago

Example 1. Prove that V2 is an irrational number.​

Answers

Answered by Anonymous
6

Solution :-

Lєt us αssumє , tσ thє cσntrαrч , thαt √2 ís rαtíσnαl.

thαt ís , wє cαn fínd cσprímє α αnd в ( в ≠ 0 ) such thαt √2 = α/b.

              √2 = \frac{a}{b}

On squaring both sides, we get ;

        2 = \frac{a^{2}}{b^{2}}

   ⇒ a² = 2b²

Clearly, a² is divisible by 2.

So, a is also divisible by 2.

Now, let some integer be c.

⇒ a = 2c

Substituting for a, we get ;

⇒ 2b² = 2c

Squaring both sides,

⇒ 2b² = 4c²

⇒ b² = 2c²

This means that, 2 divides b², and so 2 divides b.

This means that, 2 divides b², and so 2 divides b. Therefore, a and b have at least 2 as a common factor.

Lєt us αssumє , tσ thє cσntrαrч , thαt √2 ís rαtíσnαl.

thαt ís , wє cαn fínd cσprímє α αnd в ( в ≠ 0 ) such thαt √2 = α/b.

So, √2 is irrational.

What is Rational Number ?

  • A rαtíσnαl numвєr ís α numвєr thαt cαn вє єхprєss αs thє rαtíσ σf twσ íntєgєrs. α numвєr thαt cαnnσt вє єхprєssєd thαt wαч ís írrαtíσnαl.

What is Irrational Number ?

  • Thє írrαtíσnαl numвєrs αrє αll thє rєαl numвєrs whích αrє nσt rαtíσnαl numвєrs. thαt ís, írrαtíσnαl numвєrs cαnnσt вє єхprєssєd αs thє rαtíσ σf twσ íntєgєrs. ... ín thє cαsє σf írrαtíσnαl numвєrs, thє dєcímαl єхpαnsíσn dσєs nσt tєrmínαtє, nσr єnd wíth α rєpєαtíng sєquєncє.

___________________

Similar questions