Example-19)
Find maximum and minimum values of following:
(1) 1+2sinx + 3cos^2x
Answers
Answered by
4
Step-by-step explanation:
range of cos²x
0≤cos²x≤1
0≤3cos²x≤3......(1)
range of sin x
-1≤sinx≤1
-2≤2sinx≤2......(2)
adding (1) and (2)
-2≤2sinx+3cos²x≤5
adding 1
-1≤1+2sinx+3cos²x≤6
max value=6
min value=-1
note: don't trust this solution fully
Answered by
1
Answer:
y=1+2sinx+3cos²x
y=1+2sinx+3(1-sin²x)
y=1+2sinx+3-3sin²x
y=1-(3sin²x-2sinx-3)
taking 3 common;
y=1-3(sin²x-2sinx/3 -1)
using the completing square method
y=1-3(sin²x-sinx+1/9-1/9-1)
y=1-3[(sinx-1/3)²-10/9]
y=-3(sinx-1/3)²+13/3
so
Ymaxi.=13/3
Ymini.=-3(16/9)+13/3=-1
Ymaxi- Ymini=13/3 -(-1)
=13/3+1
=16/3
I hope it will help you
Similar questions