Math, asked by shilpa20mashruwala20, 9 months ago

Example 3: Sum of salaries of A and B. salaries of B and C and that
of A and Care in the ratio of 4:5:7 respectively.If sum of salaries
of A Band C is Rs. 48120, what is the salary of A?​

Answers

Answered by mddilshad11ab
70

\huge{\underline{\purple{\rm{Solution:}}}}

\large{\underline{\red{\rm{Let:}}}}

  • \rm{The\:sum\:of\: ratio\:of\: their\: salaries\:be\:x}

  • \rm{The\: Salary\:(A+B)=4x}

  • \rm{The\: Salary\:(B+C)=5x}

  • \rm{The\: Salary\:(A+C)=7x}

\large{\underline{\red{\rm{Given:}}}}

  • \rm{The\:sum\:of\: salary\:of(A+B+C)=48120}

\large{\underline{\red{\rm{To\: Find:}}}}

  • \rm{The\: salary\:of\:A}

\small{\underline{\purple{\rm{According\:to\: above\: information:}}}}

\rm{\implies (A+B)+(B+C)+(A+C)=4x+5x+7x}

\rm{\implies 4x+5x+7x=2A+2B+2C}

\rm{\implies 16x=2(A+B+C)}

\rm{\implies \cancel{16}x=2*\cancel{48120}}

\rm{\implies x=2*3007.5}

\rm\purple{\implies x=6015}

  • \rm{Putting\:the\:value\:of\:x=6015}

\rm{The\: Salary\:(A+B)=4*6015}

\rm\red{(A+B)=24060----(i)}

\rm{The\: Salary\:(B+C)=5*6015}

\rm\green{(B+C)=30075----(ii)}

\rm{The\: Salary\:(A+C)=7*6015}

\rm\purple{(A+C)=42105----(iii)}

  • \rm{Now,\: solving\:eq\:i\:and\:ii}

\rm{\implies A+B=24060}

\rm{\implies B+C=30075}

  • \rm{by\: solving\:we\:get\: here,}

\rm\orange{\implies A-C=-6015----(iv)}

  • \rm{Now,\: solving\:eq\:iii\:and\:iv}

\rm{\implies A+C=42105}

\rm{\implies A-C=-6015}

  • \rm{by\: solving\:we\:get\: here,}

\rm{\implies \cancel{2}A=\cancel{36090}}

\rm{\implies A=18045}

Hence,

\rm\purple{The\: salary\:of\:A=Rs.18045}


RvChaudharY50: Perfect..
Haezel: Amazing
EliteSoul: Nice
Answered by shadowsabers03
21

Let the salaries of A, B and C be \sf{a,\ b} and \sf{c} respectively.

Given that sum of salaries of A, B and C is Rs.48120.

\longrightarrow\sf{a+b+c=48120\quad\quad\dots(1)}

Given that sum of salaries of A and B, B and C, and C and A are in the ratio of 4 : 5 : 7, i.e.,

\longrightarrow\sf{(a+b):(b+c):(c+a)=4:5:7}

So let,

  • \sf{a+b=4x\quad\quad\dots(2)}

  • \sf{b+c=5x\quad\quad\dots(3)}

  • \sf{c+a=7x\quad\quad\dots(4)}

On adding (2), (3) and (4),

\longrightarrow\sf{(a+b)+(b+c)+(c+a)=4x+5x+7x}

\longrightarrow\sf{2(a+b+c)=16x}

From (1),

\longrightarrow\sf{2\times48120=16x}

\longrightarrow\sf{x=6015}

Then (3) becomes,

\longrightarrow\sf{b+c=5\times6015}

\longrightarrow\sf{b+c=30075\quad\quad\dots(5)}

On subtracting (5) from (1),

\longrightarrow\sf{(a+b+c)-(b+c)=48120-30075}

\longrightarrow\sf{\underline{\underline{a=18045}}}

Hence the salary of A is \bf{Rs.\,18045.}


RvChaudharY50: Excellent .
Haezel: Explained so well
EliteSoul: Great bhai :)
Similar questions