Physics, asked by adhithyanbaskarbaska, 1 month ago

Example 8.6 A car accelerates uniformly from 18 km h to 36 km h in 5 s. Calculate (i) the acceleration and (ii) the distance covered by the car in that time.​

Answers

Answered by DRJEASWARY
0

Answer:

A)

Given parameters

Time taken (t) = 5 sec

Initial velocity (u) =18 km/hour

u=18×100060×60s

 u = 5 m/s

Final velocity (v) =36km/hour

v=36×100060×60s

v =10 m/s

Acceleration a = v-u / t

a = 10 - 5 / 5

a = 1m/s2

B)

Distance travelled S = u t + (1/2) a × t2

S= 5 × 5 + (1/2) × 1 × 5^{2}

S = 25 + (1/2) × 25

S = 25 + 12.5

S = 37.5 m

Hence

acceleration a =1 m/s2

Distance travelled  S =37.5 m

Answered by SparklingThunder
4

\purple{\bf\huge{ \underline{\underline{Question : }}}}

A car accelerates uniformly from 18 km h to 36 km h in 5 s. Calculate

(i) the acceleration and

(ii) the distance covered by the car in that time.

\purple{\bf\huge{ \underline{\underline{Answer : }}}}

 \bf 1. \: Acceleration  = 1\:m {s}^{ - 2}

 \bf 2. \:Distance  \: covered   = 37.5\:m

\purple{\bf\huge{ \underline{\underline{Explanation : }}}}

\bf Given\begin{cases}  \sf Initial\:  Velocity(u) = 18 \: km \:  {h}^{ - 1}   \\  \\  \sf Final \:  Velocity(v) = 36\: km \:  {h}^{ - 1} \\  \\  \sf Time(t) =5  \: s \end{cases}

  \longmapsto\sf u = 18 \: km \:  {h}^{ - 1}  \\ \longmapsto\sf u =5 \: m \:  {s}^{ - 1}  \:  \:  \:  \:  \:

 \longmapsto \sf v = 36 \: km \:  {h}^{ - 1}  \\ \longmapsto\sf v=10 \: m \:  {s}^{ - 1}  \:  \:

 \red{ \bf \underline{Acceleration : }}

 \bf Using \:  formula :

  \longmapsto\boxed{ \bf v = u + at}

 \longmapsto \bf 10 = 5 + a(5) \\  \\  \longmapsto \bf5 + 5a = 10  \:  \:  \: \\  \\  \longmapsto \bf5a = 10 - 5  \:  \:  \: \\  \\  \longmapsto \bf5a = 5 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \longmapsto \bf a =  \frac{5}{5}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ \\  \longmapsto \bf a =1 \: m \:   {s}^{ - 2}  \:  \:  \:

 \red{ \bf \underline{ Distance \:  Covered : }}

\bf Using \:  formula :

 \longmapsto\boxed{ \bf  {v}^{2} -  {u}^{2}  = 2as}

 \bf \longmapsto ({10})^{2}  -  ({5})^{2}  = 2(1)s \\ \\  \bf \longmapsto100 - 25 = 2s  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\ \bf \longmapsto2s = 100 - 25  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\ \\  \bf \longmapsto2s = 75 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: \\ \\  \bf \longmapsto s =  \frac{75}{2}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\ \bf \longmapsto s = 37.5 \: m \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Similar questions