Math, asked by sreshtichourey, 4 months ago

Example 9: Find the ratio in which the y-axis divides the line segment joinings
points (5.-6) and (-1,-4). Also find the point of intersection.
fam


rmrajakdumka: stop reporting
rmrajakdumka: otherwise
rmrajakdumka: I will report you
Nilesh859: ...
rmrajakdumka: what
rmrajakdumka: I will report you
rmrajakdumka: I live in MUMBAI MAHARASHTRA
rmrajakdumka: I will report you
rmrajakdumka: ...
rinkusinghsingh7032: i live in Dubai

Answers

Answered by SarcasticL0ve
56

☯ Let a point P (x,y) divides the line segment joining the point A (-5,2) and B (9,-2).

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀

》Let's consider the required ratio be m : n.

⠀⠀⠀⠀

\underline{\bigstar\:\boldsymbol{Using\:Section\:Formula\::}}\\ \\

\star\;{\boxed{\sf{\pink{(x,y) = \bigg( \dfrac{m x_2 + n x_1}{m + n}\:,\: \dfrac{m y_2 + n y_1}{m + n} \bigg)}}}}\\ \\

\sf Here \begin{cases} & \sf{x_1\:,\: x_2 = \bf{5\:,\:-1}} \\ & \sf{y_1\:,\:y_2 = \bf{ - 6\:,\: - 4}} \end{cases}\\ \\

Given that,

  • The given points are divided by y - axis.

⠀⠀⠀⠀

\therefore It x - coordinate will be 0.

Therefore, Coordinates of P is (0,y).

⠀⠀⠀⠀

\underline{\bigstar\:\boldsymbol{According\:to\:the\:question\::}}\\ \\

:\implies\sf  \dfrac{m x_2 + n x_1}{m + n} = 0\\ \\ \\ :\implies\sf  \dfrac{m(-1) + n(5)}{m + n} = 0\\ \\ \\:\implies\sf -1 m + 5n = 0\\\\\\ :\implies\sf -1m = -5n\\\\\\ :\implies\sf \dfrac{m}{n} = \dfrac{5}{1}\\\\\\ :\implies{\underline{\boxed{\frak{\purple{m:n= 5:1}}}}}\;\bigstar\\ \\

\therefore{\underline{\sf{The\:ratio\:in\:which\:y-axis\:divides\:the\:line\:segment\: {\textsf{\textbf{5:1}}}.}}}\\ \\

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀

》Now, finding y - coordinate of the point of division (P).

⠀⠀⠀⠀

:\implies\sf \bigg( \dfrac{m x_2 + n x_1}{m + n}\:,\: \dfrac{m y_2 + n y_1}{m + n} \bigg)\\\\\\ :\implies\sf \bigg(0\;,\; \dfrac{m y_2 + n y_1}{m + n} \bigg)\\ \\ \\:\implies\sf \bigg(0\;,\; \dfrac{5 \times (-4) + 1 \times (-6)}{5+1} \bigg)\\ \\ \\:\implies\sf \bigg(0\;,\; \dfrac{-20 - 6}{6} \bigg)\\ \\ \\:\implies\sf \bigg(0\;,\; \dfrac{-26}{6} \bigg)\\ \\ \\:\implies{\underline{\boxed{\frak{\pink{\bigg(0\;,\; \dfrac{-13}{3} \bigg)}}}}}\;\bigstar\\ \\

\therefore{\underline{\sf{Hence,\:the\:coordinates\:of\:point\:of\:intersection\:are\: \bf{\bigg(0\;,\; \dfrac{-13}{3} \bigg)}.}}}


Anonymous: Amazing
rmrajakdumka: kya re saala
rmrajakdumka: saala
Apotropaic: Awesome :claps:
ilov3myself: Great Ishu !
Answered by Anonymous
21

Answer:

Required Answer :-

Let us assume P (x,y) divides the line segment joining the point A (-5,2) and B (9,-2).

mx2 + nx1/ m + n= 0

m(-1) + n(5)/ m + n = 0

-1m + 5n = 0

-1m =0- 5n

-1m = -5n

m:n = 5:1

The ratio is 5:1

Now,

We are finding y - coordinate of the point of division (P).

(0,)(5(-4)+ 1(-6)/ 5+1)

0, -20 - 6/6

0,-26/6

Coordinates :- 0,-13/3


rakshit2793: good
Anonymous: Gud :)
Anonymous: Splendid
Anonymous: Wait
Anonymous: Now is it ok
Anonymous: Thanks
Similar questions