Math, asked by lakkakulasanjeevrao, 9 months ago

EXERCISE 11.4
Evaluate the following
(iii) (sec square0 – 1) (cosec square0 –1)​

Answers

Answered by manishm758
0

Step-by-step explanation:

( sec² 0⁰ - 1 ) ( cosec² 0⁰ - 1 )

{ ( 1)² - 1 } { 0² - 1 }

( 1 - 1 ) ( 0 - 1 )

0 × ( - 1 )

0 ANS

plz mark as brainliest

Answered by Anonymous
0

Answer:

To prove : (\sec^2\theta -1)(\csc^2\theta-1)=1

Proof :

Taking LHS,

LHS=(\sec^2\theta -1)(\csc^2\theta-1)

Using Trigonometric identity,

\sec^2\theta -1=\tan^2\theta

\csc^2\theta -1=\cot^2\theta

LHS=(\tan^2\theta)(\cot^2\theta)

We know, \cot^2\theta=\frac{1}{\tan^2\theta}

LHS=\tan^2\theta\times \frac{1}{\tan^2\theta}

LHS=1

LHS=RHS

Hence proved.

Step-by-step explanation:

Similar questions