EXERCISE 11.4
Evaluate the following
(iii) (sec square0 – 1) (cosec square0 –1)
Answers
Answered by
0
Step-by-step explanation:
( sec² 0⁰ - 1 ) ( cosec² 0⁰ - 1 )
{ ( 1)² - 1 } { 0² - 1 }
( 1 - 1 ) ( 0 - 1 )
0 × ( - 1 )
0 ANS
plz mark as brainliest
Answered by
0
Answer:
To prove : (\sec^2\theta -1)(\csc^2\theta-1)=1
Proof :
Taking LHS,
LHS=(\sec^2\theta -1)(\csc^2\theta-1)
Using Trigonometric identity,
\sec^2\theta -1=\tan^2\theta
\csc^2\theta -1=\cot^2\theta
LHS=(\tan^2\theta)(\cot^2\theta)
We know, \cot^2\theta=\frac{1}{\tan^2\theta}
LHS=\tan^2\theta\times \frac{1}{\tan^2\theta}
LHS=1
LHS=RHS
Hence proved.
Step-by-step explanation:
Similar questions