EXERCISE 14 (d) Find the derivative of the following func tions 'ab initio', that is, using the definition (I) 2x³ (ii) x⁴ (iii) x²+1
Answers
Answered by
1
Answer:
Let f(x)=x
3
−27
According to the first principle,
(x)=
h→0
lim
h
f(x+h)−f(x)
=
h→0
lim
h
[(x+h)
3
−27]−(x
3
−27)
=
h→0
lim
h
x
3
+h
3
+3x
2
h+3xh
2
−x
3
=
h→0
lim
h
h
3
+3x
2
h+3xh
2=
h→0
lim
(h
2
+3x
2
+3xh)
= 0+3x
2
+0=3x
2
Similar questions