Math, asked by Rahulrc17, 11 months ago

expand 3/2 X+1 whole cube​

Answers

Answered by Agastya0606
35

Given: The equation ( (3x/2) + 1)^3

To find: Write it in expanded form.

Solution:

  • Now we have given ( (3x/2) + 1)^3
  • We know the formula:

                (a + b)^3 = a^3 + b^3 + 3ab(a+b)

  • So using this formula, we get:

                ( (3x/2) + 1)^3 = (3x/2)^3 + 1^3 + 3(3x/2)(1)((3x/2) + 1)

                ( (3x/2) + 1)^3 = 27x^3 / 8 + 1 + 27x^2 /4 + 9x/2

                ( (3x/2) + 1)^3 = 27x^3 / 8 + 27x^2 /4 + 9x/2 + 1

Answer:

             So the expanded form is 27x^3 / 8 + 27x^2 /4 + 9x/2 + 1

Answered by adityaraj240706
8

Answer:

Step-by-step explanation:Brainly.in

What is your question?

Rahulrc17 avatar

Rahulrc17

18.08.2019

Math

Secondary School

+5 pts

Answered

Expand 3/2 X+1 whole cube​

1

SEE ANSWER

ADD ANSWER

Rahulrc17 is waiting for your help.

Add your answer and earn points.

Answer

2.0/5

4

capturebus

Ace

3.1K answers

830.8K people helped

Given: The equation ( (3x/2) + 1)^3

To find: Write it in expanded form.

Solution:

Now we have given ( (3x/2) + 1)^3

We know the formula:

(a + b)^3 = a^3 + b^3 + 3ab(a+b)

So using this formula, we get:

( (3x/2) + 1)^3 = (3x/2)^3 + 1^3 + 3(3x/2)(1)((3x/2) + 1)

( (3x/2) + 1)^3 = 27x^3 / 8 + 1 + 27x^2 /4 + 9x/2

( (3x/2) + 1)^3 = 27x^3 / 8 + 27x^2 /4 + 9x/2 + 1

Answer:

So the expanded form is 27x^3 / 8 + 27x^2 /4 + 9x/2 + 1

Similar questions