expand (3-4ab) ³
with explanation please
Answers
Answer:
A binomial is an algebraic expression which has exactly two terms, for example, a ± b. Its power is indicated by a superscript. For example, (a ± b)2 is a power of the binomial a ± b, the index being 2.
A trinomial is an algebraic expression which has exactly three terms, for example, a ± b ± c. Its power is also indicated by a superscript. For example, (a ± b ± c)3 is a power of the trinomial a ± b ± c, whose index is 3.
Step-by-step explanation:
Expansion of (a ± b)2
(a +b)2
= (a + b)(a + b)
= a(a + b) + b(a+ b)
= a2 + ab + ab + b2
= a2 + 2ab + b2.
(a - b)2
= (a - b)(a - b)
= a(a - b) - b(a - b)
= a2 - ab - ab + b2
= a2 - 2ab + b2.
Therefore, (a + b)2 + (a - b)2
= a2 + 2ab + b2 + a2 - 2ab + b2
= 2(a2 + b2), and
(a + b)2 - (a - b)2
= a2 + 2ab + b2 - {a2 - 2ab + b2}
= a2 + 2ab + b2 - a2 + 2ab - b2
= 4ab.
Corollaries:
(i) (a + b)2 - 2ab = a2 + b2
(ii) (a - b)2 + 2ab = a2 + b2
(iii) (a + b)2 - (a2 + b2) = 2ab
(iv) a2 + b2 - (a - b)2 = 2ab
(v) (a - b)2 = (a + b)2 - 4ab
(vi) (a + b)2 = (a - b)2 + 4ab
(vii) (a + 1a)2 = a2 + 2a ∙ 1a + (1a)2 = a2 + 1a2 + 2
(viii) (a - 1a)2 = a2 - 2a ∙ 1a + (1a)2 = a2 + 1a2 - 2
Thus, we have
1. (a +b)2 = a2 + 2ab + b2.
2. (a - b)2 = a2 - 2ab + b2.
3. (a + b)2 + (a - b)2 = 2(a2 + b2)
4. (a + b)2 - (a - b)2 = 4ab.
5. (a + 1a)2 = a2 + 1a2 + 2
6. (a - 1a)2 = a2 + 1a2 - 2