Math, asked by sudhashetty937, 1 month ago

Expand (3x-2)² using Suitable identity b) Simplify (5a²-a) ÷ a​

Answers

Answered by Sirat4
1

Answer:

(3x - 2)²

Use (a - b)² = a² + b² - 2ab

Here a = 3x and b = 2

so,

(3x - 2)² = (3x)² + (4)² - 2(3x)(2)

= 9x² + 4 - 6x

Simply (5a² - a)÷ a

Take a common

a(5a -1) ÷a

a cancels out with a

= 5a - 1

Answered by MathCracker
14

Question :-

Expand (3x-2)² using Suitable identity b) Simplify (5a²-a) ÷ a.

Solution :-

1) (3x - 2)²

Using Identity : (a-b)² = a² - 2ab + b²

 \sf :  \longmapsto{(3x) {}^{2}  - 2(3x)(2) + (2) {}^{2} } \\  \\ \bf :  \longmapsto \red{9x {}^{2}  - 12x + 4} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

2) (5a² - a) ÷ a

\sf :  \longmapsto{ \frac{5a {}^{2} - a }{a} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \sf :  \longmapsto{ \frac{(5 \times  \cancel a \times a) -(  \cancel{a})}{ \cancel a} } \\  \\\bf :  \longmapsto \red{5a - 1} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c} \\ \tiny\bf{\dag}\:\underline{\frak{\rm{S}\frak{ome\:important\:algebric\:identities\:::}}} \\\\ {\bigstar}\:\rm { (A+B)^{2} = A^{2} + 2AB + B^{2}} \\\\ {\bigstar}\rm\: {(A-B)^{2} = A^{2} - 2AB + B^{2}} \\\\ {\bigstar}\rm\: {A^{2} - B^{2} = (A+B)(A-B)}\\\\ {\bigstar}\rm\: {(A+B)^{2} = (A-B)^{2} + 4AB}\\\\ {\bigstar}\rm\: {(A-B)^{2} = (A+B)^{2} - 4AB}\\\\ {\bigstar} \rm\: {(A+B)^{3} = A^{3} + 3AB(A+B) + B^{3}}\\\\ {\bigstar}\rm\:(A-B)^{3} = A^{3} - 3AB(A-B) - B^{3}\\\\ \bigstar\rm\: {A^{3} + B^{3} = (A+B)(A^{2} - AB + B^{2})} \\\\ \end{array}}\end{gathered}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Learn more from brainly :

(5a-3-2b)² expand using suitable identities..

https://brainly.in/question/39640062

Similar questions