expand cos(A+B+C) and
hence prove that cosA cosB cosC=sinA sinB cosC+ sinB sinC cosA +sinC sinA cosB
If A+B+C=90 i.e (Pi/2)
Answers
Answered by
3
This is your answer...
Please follow me.
Attachments:
Answered by
1
Answer:
Taking A+B=X and C=Y
We get Cos(x + y) = Cos x Cos y - Sin x Sin y
i.e Cos (A+B+C) = Cos (A+B) Cos C - Sin (A+B) Sin C
= (Cos A Cos B - Sin A Sin B ) Cos C - [ Sin A Cos B + Cos A Sin B ] Sin C
Cos(A+B+C) = Cos A Cos B Cos C -Sin A Sin B Cos C -Sin A Cos B Sin C - Cos A Sin B Sin C
If (A+B+C) = π/2 then Cos (A+B+C)=0
Cos A Cos B Cos C -Sin A Cos B Sin C -Cos A Sin B Sin C =0
Cos A Cos B Cos C = Sin A Sin B Cos C +Sin B Sin C Cos A + Sin C Sin A Cos B
Similar questions