Math, asked by anash96, 11 months ago

expand each of the following using suitable identities (2x-y+z)^2​

Answers

Answered by aryaAM82
21

Step-by-step explanation:

(2x-y+z)²

={(2x)² + (-y)² + (z)² + 2(2x)(-y)+2(-y)(z)+2(z)(2x)}

={4x²+y²+z² - 4xy - 2yz + 4zx}

By using (a+b+c)=a²+b²+c²+2ab+2bc+2ca

*Hope this will help you. plz thank me.

Answered by sanchitachauhan241
5

 \huge\bold\red{Answer}

 \bf \: (2x - y + z)^{2}

 \bf \: By  \: using \:  Identity:-

 \bf \: (x + y + z) ^{2}  =  {x}^{2}  +  {y}^{2}  +  {z}^{2}  +  \: 2xy \:  +   \: 2yz \:  + 2zx \:  \:

 \bf\: (2x \:  + (  \: - y) \:  + z) ^{2}  =  {x}^{2}  \:  +  {y}^{2}  \:  +  {z}^{2}  \:  + 2 \times 2x \: ( - y) \:  + 2 \:  \times  \:  \: ( \:  - y) \:  \times z \:  \:  +  \: 2 \:   \times  \: z \:  \times  \: x

\bf(2x - y + z)^2 = \bf\:   \:  {4x}^{2}  \:  + \:   {y}^{2}  \:  + \:   {z}^{2}  - 4xy \:  - 2yz \:  +  \: 2zy \:

Similar questions