expand each of the following using suitable identities X + 2 Y + 4 Z whole square
Answers
(x + 2y +
4z)²
Using identity,
(a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca
Here, a = x, b = 2y and c = 4z
(x + 2y + 4z)²
= x² + (2y)² +
(4z)²² + (2×x×2y) + (2×2y×4z) + (2×4z×x)
= x² +
4y² + 16z²+ 4xy + 16yz + 8xz
hope it helps u
Step-by-step explanation:
Use suitable identities to find the following products:
(i) (x + 4) (x + 10)
(ii) (x + 8) (x – 10)
(iii) (3x + 4) (3x – 5)
(iv) (y2+ 3/2 ) (y2– 3/2 )
(v) (3 – 2x) (3 + 2x)
Solution:
(i) (x + 4) (x + 10)
Using identity (x + a)(x + b) = x2 + (a + b)x + ab
(x + 4)(x + 10) = x2 + (4 + 10)x + 4×10
= x2 + 14x + 40
(ii) (x + 8) (x – 10)
Using identity (x + a)(x + b) = x2 + (a + b)x + ab
(x + 8) (x – 10) = x2 + (8 – 10)x + 8x(-10)
= x2 – 2x – 80x
(iii) (3x + 4) (3x – 5)
Using identity (x + a)(x + b) = x2 + (a + b)x + ab
(3x + 4) (3x – 5) = (3x)2 + (4 – 5)3x + 4x(-5)
= 9x2 – 3x – 20
(iv) (y2+ 3/2 ) (y2– 3/2 )
Using identity (x + a)(x – a) = x2 – a2
(y2+ 3/2 ) (y2– 3/2 ) = y2 – (3/2)2
= y2 – 9/4
(v) (3 – 2x) (3 + 2x)
Using identity (x + a)(x – a) = x2 – a2
(3 – 2x) (3 + 2x)= 32 – (2x)2 = 92 – 4x2
mmae