Math, asked by priyagosain1995, 10 months ago

Expand each of the following using suitable identity(2A-3B)^2

Answers

Answered by xBrainlyKingXx
49

\color{red}\huge{\underline{\underline{\mathfrak{♡Answer♡}}}}

\left(2A+3B\right)^2

{\blue{\text{We know that}}

\left(a+b\right)^2[tex]</p><p>[tex]{\text{Here 2A is at place of A and 3B at B

{\pink{\bold{\text{According to identity}}}}

\left(2A+3B\right)^2

\implies\left(2A\right)^2-\left(3B\right)^2+2\left(2A\right)\left(3B\right)

\implies4A²+9B²-2(2A)(3B)

\implies4A²+9B²-12AB

Answered by nntmbajpai
3

Answer:

\huge{\underline{\underline{\boxed{\sf{\red{♡ANSWER♡}}}}}}

\longrightarrow\large{ Expand : (2A - 3B)}^{2}

\large\bold{We \:  know \:  the \:  formula,}

 (a - b)² = a² - 2ab + b²

So by this we get ,

\longrightarrow{(2A - 3B)}^{2}

 ={ (2A)² - 2(2A)(3B) + (3B)²}

 ={ 4A² - 12AB + 9B²}

Similar questions