Math, asked by AbelTomy, 11 months ago

expand if a-(1/a)=3; find ((a*a)+3a+(1/(a*a))+(3/a)​

Answers

Answered by arurocks111
0

Answer:

11 + 3√13

Step-by-step explanation:

a - \frac{1}{a} = 3    

a^{2} - 1 = 3a

a^{2} -3a -1 = 0

a = \frac{-(-3) + \sqrt{(-3)^{2} -4(1)(-1) } }{2(1)}                   a = \frac{-(-3) - \sqrt{(-3)^{2} -4(1)(-1) } }{2(1)}

a = \frac{3 + \sqrt{13} }{2}                                           a = \frac{3 - \sqrt{13} }{2}

a - \frac{1}{a} = 3

(a - \frac{1}{a})^{2}  = 3^{2}

a^{2} + \frac{1}{a^{2} } - 2 = 9

a^{2} + \frac{1}{a^{2} } = 11

Therefore,

a^{2} + \frac{1}{a^{2} }  + 3a  +\frac{3}{a} = 11 + 3(a + \frac{1}{a} )

                           = 11 + 3 ( \frac{3 + \sqrt{13} }{2} + \frac{1}{ \frac{3 + \sqrt{13} }{2}} )\\

                           = 11  + 3(\frac{26 + 6\sqrt{13} }{2(3 + \sqrt{13}  })

                           = 11 + 3 (\frac{\sqrt{13}  (\sqrt{13} + 3)  }{3 + \sqrt{13} } )

                           = 11 + 3√13

                           

Similar questions