Math, asked by dhruvsethi708, 2 months ago

expand sinx in power of x-pi/2 and find sin91

Answers

Answered by saachirawani
4

\sf{ \blue{✿Hope \: this \: helps! }}

Attachments:
Answered by ItzVenomKingXx
0

The expansion of sin(x)sin(x) in powers of (x-\frac{\pi}{2})(x−2π) using Taylor's series is \\ sin(x) = \sum_{k \in \mathbb{N}}\frac{(x-\frac{\pi}{2})^{4k}}{(4k)!}-\frac{(x-\frac{\pi}{2})^{4k+2}}{(4k+2)!}sin(x) \\ =∑k∈N(4k)!(x−2π)4k−(4k+2)!(x−2π)4k+2 \\By Taylor's Theorem, \\ sin(x)  \\ = sin(\frac{\pi}{2})+sin'(\frac{\pi}{2})(x-\frac{\pi}{2})+ \dots + \frac{sin^{(k)}(\frac{\pi}{2})}{k!}(x-\frac{\pi}{2})^ksin(x)  \\But \\ sin^{(n)}(\frac{\pi}{2}) = sin(\frac{\pi}{2}) \\ sin^{(n)}(\frac{\pi}{2}) = -sin(\frac{\pi}{2}) = -1sin(n)(2π) \\ and \\ sin^{(n)}(\frac{\pi}{2}) = \pm cos(\frac{\pi}{2}) = 0sin(n)(2π)=±cos(2π)=0  \: otherwise \\Therefore \\ sin(x) = \sum_{k \in \mathbb{N}}\frac{(x-\frac{\pi}{2})^{4k}}{(4k)!}-\frac{(x-\frac{\pi}{2})^{4k+2}}{(4k+2)!}sin(x) \\

Similar questions