Math, asked by srivastavamadhu582, 3 months ago

expand the following (2x + 1/3x ) ^ 2​

Answers

Answered by Anonymous
1

Answer:

\huge\colorbox{yellow}{Answer\:-}

 {(2x +  \frac{1}{3}x) }^{2}

Now,

 {(2x +  \frac{1}{3}x) }^{2}

 =  {(2x +  \frac{1x}{3}) }^{2}

 =  {(2x +  \frac{x}{3} )}^{2}

 = (2x +  \frac{x}{3})(2x +  \frac{x}{3})

 = 2x(2x +  \frac{x}{3}) + (2x +  \frac{x}{3}). \frac{x}{3}

 =  {4x}^{2} + 2x. \frac{x}{3} + (2x +  \frac{x}{3}) . \frac{x}{3}

 =  {4x}^{2} +  \frac{2xx}{3} + (2x +  \frac{x}{3}). \frac{x}{3}

 =  {4x}^{2} +  \frac{ {2x}^{2} }{3} + (2x +  \frac{x}{3}). \frac{x}{3}

 =  {4x}^{2} +  \frac{ {2x}^{2} }{3} +  \frac{(2x +  \frac{x}{3}).x }{3}

 =  {4x}^{2} +  \frac{ {2x}^{2} }{3} +  \frac{ {2x}^{2} + x. \frac{x}{3}  }{3}

 =  {4x}^{2} +  \frac{ {2x}^{2} }{3} +  \frac{ {2x}^{2} +  \frac{xx}{3}  }{3}

 =  {4x}^{2} +  \frac{ {2x}^{2} }{3} +  \frac{ {2x}^{2} +  \frac{ {x}^{2} }{3}  }{3}

\pink{ =  >  {4x}^{2} +  \frac{ {2x}^{2} }{3} +  \frac{ {2x}^{2} +  \frac{ {x}^{2} }{3}  }{3}  }

\huge\colorbox{yellow}{Thank\:You}

we \: value \: your \: care

Answered by itslovewar
1

Answer:

expand the following (2x + 1/3x ) ^ 2

Attachments:
Similar questions