Math, asked by jyothulasaritha, 8 months ago

expand the following log a^x ×b^y/c^x​

Answers

Answered by Arceus02
7

We are given

\longrightarrow \sf {log \Bigg\lgroup \dfrac{{a}^{x} *  {b}^{y}}{{c}^{x}} \Bigg\rgroup}

We can write it as,

\longrightarrow \sf { log {a}^{x} + log{b}^{y} - log{c}^{x}}

\longrightarrow \sf{ xloga + y logb - xlogc}

Hence, your required answer is,

\longrightarrow \underline{\underline{\sf{ xloga + y logb - xlogc}}}

\sf{\\ \\}

Formulas Used:-

\quad \quad \bullet \sf{log (\dfrac{m}{n}) = logm - logn}

\quad \quad \bullet \sf{log (mn) = logm + logn}

\quad \quad \bullet \sf{log {m}^{n} = nlogm}

\sf{\\ \\}

\longrightarrow \sf{ xloga + y logb - xlogc} can be simplified,

\longrightarrow \sf{ x(loga - logc) + ylob}, but since the question is asking for expanding the expression, it is better not to take x as common.

Similar questions