Math, asked by ratdna, 1 year ago

Expand the given:

(2p + 3q)(4 {p}^{2}  - 6pq + 9 {q}^{2} )

Answers

Answered by mohitroy032006
42

Step-by-step explanation:

(2p+3q)(4p²-6pq+9q²)

⇒(2p+3q){(2p)²-2(2p)(3q)+(3q)²}

⇒(2p+3q)(2p-3q)²

⇒(2p+3q)(2p-3q)(2p-3q)

PLS PLS PLS MARK ME BRAINLIEST.

Answered by charliejaguars2002
30

ANSWERS:

\longrightarrow \Large\boxed{8p^3+27q^3}

EXPLANATIONS:

To solve this problem, first you have to use distributive property by using with expanding expression.

SOLUTIONS:

\mathsf{Distributive\quad Property}

\mathsf{A(B+C)=AB+AC}

\displaystyle (2p+3q)(4p^2-6pq+9q^2)

First, you have to solve with parenthesis.

\displaystyle 2p*4p^2+2p(-6pq)+2p*9q^2+3q*4p^2+3q(-6pq)+3q*9q^2

Change negative sign to positive sign.

\Rightarrow \displaystyle +(-b)=-b

Rewrite the problem.

\displaystyle 2\cdot \:4p^2p-2\cdot \:6ppq+2\cdot \:9pq^2+3\cdot \:4p^2q-3\cdot \:6pqq+3\cdot \:9q^2q

Solve.

\displaystyle 2*\:4p^2p-2* \:6ppq+2* \:9pq^2+3* \:4p^2q-3*\:6pqq+3*\:9q^2q

\displaystyle 2*4p^2p

Multiply.

\Rightarrow\displaystyle 2\times4p^2p=8p^3

\displaystyle 2\times6ppq=12p^2q

\displaystyle 2\times9=18

\displaystyle 4\times3=12

\displaystyle 6\times3=18

\displaystyle 9\times3=27

\Rightarrow \displaystyle 8p^3-12p^2q+18pq^2+12p^2q-18pq^2+27q^3

Combined like terms. (Group like terms.)

\Rightarrow\displaystyle 8p^3-12p^2q+12p^2q+18pq^2-18pq^2+27q^3

Then, you add or subtract elements to the numbers from left to right.

\displaystyle 12-12=0

\displaystyle -12p^2q+12p^2q=0

Rewrite the problem again.

\displaystyle 8p^3+18pq^2-18pq^2+27q^3

Subtract.

\displaystyle 18-18=0

\Rightarrow \Large\boxed{8p^3+27q^3}

So, the correct answer is 8p³+27q³.

Similar questions