Math, asked by ƁƦƛƖƝԼƳƜƛƦƦƖƠƦ, 7 months ago

expand the polynomial
 {(2+ 3)}^{2}  \\  {(2  - 3)}^{2}

Answers

Answered by sudharshan1404
8

Answer:

 {2}^{2}  + 2 \times 3 +  {3}^{2}

 =  > 4 + 2(6) + 9

 =  >  4 + 12 + 9

 =  > 25

 {2}^{2}  - 2(2)(2) +  {3}^{2}

 =  > 4 - 2(6) + 9

13 - 9

 =  > 4

Answered by Anonymous
25

Question:

Expand the following:-

⊙(2+3)²

⊙(2-3)²

Answer:

⊙(2+3)²

 \sf : \implies2²+3²+2(2)(3)

 \sf  :  \implies4+9+12

 \sf :  \implies25

▬▬▬▬▬▬▬▬▬▬▬▬

⊙(2-3)²

\sf : \implies 2²+3²-2(2)(3)

\sf : \implies 4+9-12

\sf :\implies 1

▬▬▬▬▬▬▬▬▬▬▬▬

Algebric Identities :

\boxed{\begin{minipage}{7 cm}\boxed{\bigstar\:\:\textbf{\textsf{Algebric\:Identity}}\:\bigstar}\\\\1)\bf\:(A+B)^{2} = A^{2} + 2AB + B^{2}\\\\2)\sf\: (A-B)^{2} = A^{2} - 2AB + B^{2}\\\\3)\bf\: A^{2} - B^{2} = (A+B)(A-B)\\\\4)\sf\: (A+B)^{2} = (A-B)^{2} + 4AB\\\\5)\bf\: (A-B)^{2} = (A+B)^{2} - 4AB\\\\6)\sf\: (A+B)^{3} = A^{3} + 3AB(A+B) + B^{3}\\\\7)\bf\:(A-B)^{3} = A^{3} - 3AB(A-B) + B^{3}\\\\8)\sf\: A^{3} + B^{3} = (A+B)(A^{2} - AB + B^{2})\\\\\end{minipage}}

Similar questions