Math, asked by lusy83159, 1 year ago

expand (x+3)^5 the binomial theorem

Answers

Answered by MaheswariS
6

\underline{\textbf{Given:}}

\mathsf{(x+3)^5}

\underline{\textbf{To expand:}}

\mathsf{(x+3)^5}

\underline{\textbf{Solution:}}

\underline{\textbf{Binomial theorem:}}

\boxed{\mathsf{(a+b)^n=n_{C_0}\,a^n\,b^0+n_{C_1}\,a^{n-1}\,b^1+\;.\;.\;.\;.\;.+n_{C_n}\,a^0\,b^n}}

\mathsf{Consider,}

\mathsf{(x+3)^5}

\textsf{Using binomial theorem,}

\mathsf{=5_{C_0}\,x^5\,3^0+5_{C_1}\,x^4\,3^1+5_{C_2}\,x^3\,3^2+5_{C_3}\,x^2\,3^3+5_{C_4}\,x^1\,3^4+5_{C_5}\,x^0\,3^5}

\mathsf{=5_{C_0}\,x^5\,3^0+5_{C_1}\,x^4\,3^1+5_{C_2}\,x^3\,3^2+5_{C_2}\,x^2\,3^3+5_{C_1}\,x^1\,3^4+5_{C_5}\,x^0\,3^5}

\mathsf{=1\,x^5(1)+5\,x^4(3)+\dfrac{5{\times}4}{1{\times}2}\,x^3(9)+\dfrac{5{\times}4}{1{\times}2}\,x^2(27)+5\,x^1(81)+1\,x^0(243)}

\mathsf{=x^5+15\,x^4+90\,x^3+270\,x^2+405x^1+243}

\mathsf{=x^5+15\,x^4+90\,x^3+270\,x^2+405\,x+243}

Similar questions