Math, asked by kk3438380, 8 months ago

Expanded form of (3a-4b)cube

Answers

Answered by Anonymous
9

\huge\underline\mathbb\purple{ANSWER}

By using identity VII

(x - y) {}^{3} =  {x}^{3} - 3x {}^{2}y + 3xy^{2} -  {y}^{3}

Given-

(3a - 4p) {}^{3}

To solve-

Their product

Solution -

(3a)^{3} - 3(3a)^{2}(4b) +3(3a)(4b)^{2} -  {(4b)}^{3}

 => 27a^{3} - 108a^{2} b + 144a {b}^{2} - 64b^{3}

_____________________________________

Some more identities -

(x + y) {}^{2} =  {x}^{2} + 2xy +  {y}^{2}

(x - y) {}^{2} =  {x}^{2} - 2xy +  {y}^{2}

(x + y)(x - y) =  {x}^{2} -  {y}^{2}

(x + y + z) {}^{2} =  {x}^{2} +  {y}^{2}  +  {z}^{2} + 2xy + 2yz + 2zx

(x + a)(x + b) =  {x}^{2} + (a + b)x + (a \times b)

_________________________________________

Answered by Anonymous
55

Answer:

(3a+4b)^3

= 27a^3+64b^3 + 36(3a+4b)

(a-b)^3 = a^3 - b^3 - 3ab(a-b)

Similar questions