expansion of 2x+1/x)^4, x=/0
Attachments:
Answers
Answered by
6
Heya!!
Using Binomial Theorem
(2x+1/x)⁴ = (2x)⁴ + 4(2x)³(1/x) + 6(2x)²(1/x)²+ 4(2x)(1/x)³+(1/x)⁴
=>(2x+1/x)⁴ = 16x⁴+32x²+24+8/x²+1/x⁴
Using Binomial Theorem
(2x+1/x)⁴ = (2x)⁴ + 4(2x)³(1/x) + 6(2x)²(1/x)²+ 4(2x)(1/x)³+(1/x)⁴
=>(2x+1/x)⁴ = 16x⁴+32x²+24+8/x²+1/x⁴
Answered by
3
★ BINOMIAL EXPANSION ★
Given function :
(2x + 1/x)⁴ =
( 2x )⁴ + 4 ( 2x )³ 1/x + 6 ( 2x )²(1/x)² + 4 ( 2x ) ( 1/x)³ + (1/x)⁴
Will furthermore result in :
16x⁴ + 32 x² + 24 + 8/x² + 1/x⁴
★✩★✩★✩★✩★✩★✩★✩★✩★✩★✩★
Given function :
(2x + 1/x)⁴ =
( 2x )⁴ + 4 ( 2x )³ 1/x + 6 ( 2x )²(1/x)² + 4 ( 2x ) ( 1/x)³ + (1/x)⁴
Will furthermore result in :
16x⁴ + 32 x² + 24 + 8/x² + 1/x⁴
★✩★✩★✩★✩★✩★✩★✩★✩★✩★✩★
Similar questions