Computer Science, asked by pavithkalyan8026, 11 months ago

Explain Addition and Subtraction with signed magnitude 2’s complement data.

Answers

Answered by ramjanam3122
0

Answer:

Signed Binary Numbers

Signed Binary Numbers use the MSB as a sign bit to display a range of either positive numbers or negative numbers

In mathematics, positive numbers (including zero) are represented as unsigned numbers. That is we do not put the +ve sign in front of them to show that they are positive numbers.

However, when dealing with negative numbers we do use a -ve sign in front of the number to show that the number is negative in value and different from a positive unsigned value, and the same is true with signed binary numbers.

However, in digital circuits there is no provision made to put a plus or even a minus sign to a number, since digital systems operate with binary numbers that are represented in terms of “0’s” and “1’s”. When used together in microelectronics, these “1’s” and “0’s”, called a bit (being a contraction of BInary digiT), fall into several range sizes of numbers which are referred to by common names, such as a byte or a word.

We have also seen previously that an 8-bit binary number (a byte) can have a value ranging from 0 (000000002) to 255 (111111112), that is 28 = 256 different combinations of bits forming a single 8-bit byte. So for example an unsigned binary number such as: 010011012 = 64 + 8 + 4 + 1 = 7710 in decimal. But Digital Systems and computers must also be able to use and to manipulate negative numbers as well as positive numbers.

Mathematical numbers are generally made up of a sign and a value (magnitude) in which the sign indicates whether the number is positive, ( + ) or negative, ( – ) with the value indicating the size of the number, for example 23, +156 or -274. Presenting numbers is this fashion is called “sign-magnitude” representation since the left most digit can be used to indicate the sign and the remaining digits the magnitude or value of the number.

Sign-magnitude notation is the simplest and one of the most common methods of representing positive and negative numbers either side of zero, (0). Thus negative numbers are obtained simply by changing the sign of the corresponding positive number as each positive or unsigned number will have a signed opposite, for example, +2 and -2, +10 and -10, etc.

The easiest way to find the one’s complement of a signed binary number when building digital arithmetic or logic decoder circuits is to use Inverters. The inverter is naturally a complement generator and can be used in parallel to find the 1’s complement of any binary number as shown.

Addition and Subtraction Using One’s Complement

Addition and Subtraction Using One’s ComplementOne of the main advantages of One’s Complement is in the addition and subtraction of two binary numbers. In mathematics, subtraction can be implemented in a variety of different ways as A – B, is the same as saying A + (-B) or -B + A etc. Therefore, the complication of subtracting two binary numbers can be performed by simply using addition.

Similar questions