Biology, asked by devanandamspa1in1, 1 year ago

explain an activity to study about the presence of micro organisms in soil water sample?

Answers

Answered by gurjeet61
0
Detection of microbial enzymes in natural environments is important to understand biochemical activities and to verify the biotechnological potential of the microorganisms. In the present report, 346 isolates from soil, water, and plants were screened for enzyme production (caseinase, gelatinase, amylase, carboxymethyl cellulase, and esterase). Our results showed that 89.6% of isolates produced at least one tested enzyme. A predominance of amylase in soil samples, carboxymethyl cellulase in plants, as well as esterase and gelatinase in water was observed. Interesting enzymatic profiles were found in some microenvironments, suggesting specificity of available nutrients and/or natural selection. This study revealed the potential of microorganisms present in water, soil, and plant to produce important enzymes for biotechnological exploration. A predominance of certain enzymes was found, depending on the type of environmental sample. The distribution of microbial enzymes in soil, water and plants has been little exploited in previous reports.

Keywords: Amylase, cellulase, esterase, microorganisms, plant, proteases, soil, water.
INTRODUCTION

The enormous microbial diversity in nature has been reported for many decades by multiple analyses of micro-organism communities in environmental samples [1-3]. The evolution of microorganisms associated with selective pres-sures in different habitats has produced their unparalleled physiological and biochemical diversity, in which enzymes play a key role in microbial adaptation [4,5].

The majority of industrial enzymes used nowadays has a microbial origin and have hydrolytic activity with quite diverse potential applications in different areas. Microbial enzymes are relatively more stable and have properties more diverse than other enzymes derived from plants and animals [6,7]. Among these hydrolytic enzymes, proteases occupy a pivotal position with respect to their applications in both physiological and commercial fields. Proteolytic enzymes catalyze the cleavage of peptide bonds in other proteins, and microorganisms elaborate a large array of intracellular and/or extracellular proteases [6-8]. Proteases are still the most dominant enzyme type in the market due to their extensive use in detergent and dairy industries [9].

Various carbohydrases, primarily amylases and cellulases, represent the second largest group in the market [9]. Amylases hydrolyze starch molecules to give diverse products, including dextrins and progressively smaller polymers composed of glucose units [10]. A number of these starch-converting enzymes are alpha-amylase (E.C.3.2.1.1), one of the most important industrial amylases [11,12]. Microbial amylases have successfully replaced the chemical hydrolysis of starch in starch-processing industries and present potential applications in a number of industrial processes involving food, textile, and paper sectors [13]. Carboxymethyl (CM) cellulases (EC 3.2.1.4), cellobiohy-drolases (EC 3.2.1.91), and β-glucosidases (EC 3.2.1.21), which are collectively
Similar questions