Economy, asked by prathyusha3885, 1 year ago

Explain any three main properties of arithmetic mean

Answers

Answered by JaishikaKumawat1928
9

Property 1:

If x is the arithmetic mean of n observations x1, x2, x3, . . xn; then 

(x1 - x) + (x2 - x) + (x3 - x) + ... + (xn - x) = 0. 

Now we will proof the Property 1:

We know that 

x = (x1 + x2 + x3 + . . . + xn)/n 

⇒ (x1 + x2 + x3 + . . . + xn) = nx. ………………….. (A) 

Therefore, (x1 - x) + (x2 - x) + (x3 - x) + ... + (xn - x)

= (x1 + x2 + x3 + . . . + xn) - nx

= (nx - nx), [using (A)].

= 0. 

Hence, (x1 - x) + (x2 - x) + (x3 - x) + ... + (xn - x) = 0. 

Property 2:

The mean of n observations x1, x2, . . ., xn is x. If each observation is increased by p, the mean of the new observations is (x + p).

Now we will proof the Property 2:

x = (x1 + x2 +. . . + xn)/n 

⇒ x1 + x2 + . . . + xn) = nx …………. (A) 

Mean of (x1 + p), (x2 + p), ..., (xn + p) 

= {(x1 + p) + (x2 + p) + ... + (x1 + p)}/n 

= {(x1 + x2 + …… + xn) + np}/n

= (nx + np)/n, [using (A)].

= {n(x + p)}/n 

= (x + p). 

Hence, the mean of the new observations is (x + p). 

Property 3:

The mean of n observations x1, x2, . . ., xn is x. If each observation is decreased by p, the mean of the new observations is (x - p).

Now we will proof the Property 3:

x = (x1 + x2 +. . . + xn)/n 

⇒ x1 + x2 + . . . + xn) = nx …………. (A) 

Mean of (x1 - p), (x2 - p), ...., (xn - p) 

= {(x1 - p) + (x2 - p) + ... + (x1 - p)}/n 

= {(x1 + x2 + …. + xn) - np}/n

= (nx - np)/n, [using (A)].

= {n(x - p)}/n 

= (x - p). 

Hence, the mean of the new observations is (x + p). 

Similar questions