Math, asked by subodh2129, 1 year ago

integration of (tan^-1)root(x)

Answers

Answered by BrainlyWarrior
1
\textbf{ Hello Mate}☺☺

\textbf{Here Is Your Answer}>>>

✔∫ tan^-1 √x dx

Put √x = t

x = t^2

dx = 2tdt.

=∫tan^-1 t . 2tdt

=2∫t tan^-1 dt.

=2[ tan^-1 t ∫  t.dt - ∫ [ \frac{d}{dx} (tan^-1). ∫  t. dt]
dx

=2[ tan^-1 t . \frac{ t^2}{2} - ∫ (\frac{1}{1 + t^2 }. \frac{t^2}{2}]dx

=2[ \frac{t^2}{2} tan^-1 - \frac{2}{2} ∫ \frac{t^2}{1 + t^2 } dt.

=t^2 tan^-1 t - \frac{2}{2}\frac{(t^2 + 1) - 1}{1 +t^2 } .dt

=t^2 tan^-1 t - \frac{ 2}{2} [∫dt - ∫ \frac{1}{1 + t^2}.dt]

=t^2 tan^-1 t - \frac{ 2}{2} [ (t) - tan^-1 t ]

=t^2 tan^-1 t - t + tan^-1 t + c

=x  tan^-1 √x - √x + tan^-1√x + c

=tan^-1 √x( x + 1 ) - √x + c

\boxed{Be.. Brainlyy..}

@karangrover12
Similar questions