integration of (tan^-1)root(x)
Answers
Answered by
1
☺☺
>>>
✔∫ tan^-1 √x dx
Put √x = t
x = t^2
dx = 2tdt.
=∫tan^-1 t . 2tdt
=2∫t tan^-1 dt.
=2[ tan^-1 t ∫ t.dt - ∫ [ (tan^-1). ∫ t. dt]
dx
=2[ tan^-1 t . - ∫ (. ]dx
=2[ tan^-1 - ∫ dt.
=t^2 tan^-1 t - ∫ .dt
=t^2 tan^-1 t - [∫dt - ∫ .dt]
=t^2 tan^-1 t - [ (t) - tan^-1 t ]
=t^2 tan^-1 t - t + tan^-1 t + c
=x tan^-1 √x - √x + tan^-1√x + c
=tan^-1 √x( x + 1 ) - √x + c
@karangrover12
>>>
✔∫ tan^-1 √x dx
Put √x = t
x = t^2
dx = 2tdt.
=∫tan^-1 t . 2tdt
=2∫t tan^-1 dt.
=2[ tan^-1 t ∫ t.dt - ∫ [ (tan^-1). ∫ t. dt]
dx
=2[ tan^-1 t . - ∫ (. ]dx
=2[ tan^-1 - ∫ dt.
=t^2 tan^-1 t - ∫ .dt
=t^2 tan^-1 t - [∫dt - ∫ .dt]
=t^2 tan^-1 t - [ (t) - tan^-1 t ]
=t^2 tan^-1 t - t + tan^-1 t + c
=x tan^-1 √x - √x + tan^-1√x + c
=tan^-1 √x( x + 1 ) - √x + c
@karangrover12
Similar questions
English,
8 months ago
Hindi,
8 months ago
Math,
1 year ago
Political Science,
1 year ago
India Languages,
1 year ago
Science,
1 year ago
Biology,
1 year ago