Explain binomial theorem with an solved example
Please don't send irrelevant answers
Answers
Answered by
1
The Binomial Theorem is a quick way (okay, it's a less slow way) of expanding (or multiplying out) a binomial expression that has been raised to some (generally inconveniently large) power.
Expand (x2 + 3)6
(x2 + 3)6 = 6C0 (x2)6(3)0 + 6C1(x2)5(3)1 + 6C2 (x2)4(3)2 + 6C3 (x2)3(3)3+ 6C4 (x2)2(3)4 + 6C5 (x2)1(3)5 + 6C6 (x2)0(3)6Then simplifying gives me(1)(x12)(1) + (6)(x10)(3) + (15)(x8)(9) + (20)(x6)(27)+ (15)(x4)(81) + (6)(x2)(243) + (1)(1)(729)= x12 + 18x10 + 135x8 + 540x6 + 1215x4 + 1458x2 + 729
Expand (x2 + 3)6
(x2 + 3)6 = 6C0 (x2)6(3)0 + 6C1(x2)5(3)1 + 6C2 (x2)4(3)2 + 6C3 (x2)3(3)3+ 6C4 (x2)2(3)4 + 6C5 (x2)1(3)5 + 6C6 (x2)0(3)6Then simplifying gives me(1)(x12)(1) + (6)(x10)(3) + (15)(x8)(9) + (20)(x6)(27)+ (15)(x4)(81) + (6)(x2)(243) + (1)(1)(729)= x12 + 18x10 + 135x8 + 540x6 + 1215x4 + 1458x2 + 729
princessBarbie:
if u like it pls mark as brainliest
Similar questions