Physics, asked by mohansathawanestuden, 7 months ago

explain dimension of accelaration?​

Answers

Answered by nilanchallic
1

Answer:

Units. Acceleration has the dimensions of velocity (L/T) divided by time, i.e. ... The SI unit of acceleration is the metre per second squared (m s−2); or "metre per second per second", as the velocity in metres per second changes by the acceleration value, every second.

Dimension: L T −2

SI unit: m/s2, m·s−2, m s−2

Answered by adivyansh229
0

Explanation:

In mechanics, acceleration is the rate of change of the velocity of an object with respect to time. Accelerations are vector quantities (in that they have magnitude and direction).[1][2] The orientation of an object's acceleration is given by the orientation of the net force acting on that object. The magnitude of an object's acceleration, as described by Newton's Second Law,[3] is the combined effect of two causes:

the net balance of all external forces acting onto that object — magnitude is directly proportional to this net resulting force;

that object's mass, depending on the materials out of which it is made — magnitude is inversely proportional to the object's mass.

Acceleration

In vacuum (no air resistance), objects attracted by Earth gain speed at a steady rate.

Common symbols

aSI unitm/s2, m·s−2, m s−2DimensionL T −2

The SI unit for acceleration is metre per second squared (m⋅s−2, {\displaystyle {\tfrac {\operatorname {m} }{\operatorname {s} ^{2}

For example, when a vehicle starts from a standstill (zero velocity, in an inertial frame of reference) and travels in a straight line at increasing speeds, it is accelerating in the direction of travel. If the vehicle turns, an acceleration occurs toward the new direction and changes its motion vector. The acceleration of the vehicle in its current direction of motion is called a linear (or tangential during circular motions) acceleration, the reaction to which the passengers on board experience as a force pushing them back into their seats. When changing direction, the effecting acceleration is called radial (or orthogonal during circular motions) acceleration, the reaction to which the passengers experience as a centrifugal force. If the speed of the vehicle decreases, this is an acceleration in the opposite direction and mathematically a negative, sometimes called deceleration, and passengers experience the reaction to deceleration as an inertial force pushing them forward. Such negative accelerations are often achieved by retrorocket burning in spacecrafts.[4] Both acceleration and deceleration are treated the same, they are both changes in velocity. Each of these accelerations (tangential, radial, deceleration) is felt by passengers until their relative (differential) velocity are neutralized in reference to the vehicle.

Similar questions