Chemistry, asked by faithyetty2235, 11 months ago

Explain how osmotic pressure is a colligative property

Answers

Answered by mnaik3224gmailcom
0

What are Colligative Properties?

A we have discussed, solutions have different properties than either the solutes or the solvent used to make the solution. Those properties can be divided into two main groups--colligative and non-colligative properties. Colligative properties depend only on the number of dissolved particles in solution and not on their identity. Non-colligative properties depend on the identity of the dissolved species and the solvent.

To explain the difference between the two sets of solution properties, we will compare the properties of a 1.0 M aqueous sugar solution to a 0.5 M solution of table salt (NaCl) in water. Despite the concentration of sodium chloride being half of the sucrose concentration, both solutions have precisely the same number of dissolved particles because each sodium chloride unit creates two particles upon dissolution--a sodium ion, Na+, and a chloride ion, Cl-. Therefore, any difference in the properties of those two solutions is due to a non-colligative property. Both solutions have the same freezing point, boiling point, vapor pressure, and osmotic pressure because those colligative properties of a solution only depend on the number of dissolved particles. The taste of the two solutions, however, is markedly different. The sugar solution is sweet and the salt solution tastes salty. Therefore, the taste of the solution is not a colligative property. Another non-colligative property is the color of a solution. A 0.5 M solution of CuSO4 is bright blue in contrast to the colorless salt and sugar solutions. Other non-colligative properties include viscosity, surface tension, and solubility.

Raoult's Law and Vapor Pressure Lowering

When a nonvolatile solute is added to a liquid to form a solution, the vapor pressure above that solution decreases. To understand why that might occur, let's analyze the vaporization process of the pure solvent then do the same for a solution. Liquid molecules at the surface of a liquid can escape to the gas phase when they have a sufficient amount of energy to break free of the liquid's intermolecular forces. That vaporization process is reversible.


mnaik3224gmailcom: if u like my answer u can follow me....
mnaik3224gmailcom: I wish u choose my answer as the brilliant answer......
Similar questions