explain how to do multiplicative inverse of exponents with negative powers. Explain using 5 examples. PLEASE,EXPLAIN IN DETAIL
Answers
Answered by
0
if a is any real number it's multiplicative inverse is 1/a
a * 1/a =1
1) (a/b)^-n * (a/b)^n= 1
(a/b)^n is multiplicative inverse of (a/b)^-n
example
1) (2/3)^-2* (3/2)^2=1
2) (1/5)^-3* (1/5)^3 =1
3) (7)^-5* (7)^5=1
4) (-13/6)^-9*(-13/6)^9 =1
5) (5/2)^-4*(5/2)^4=1
a * 1/a =1
1) (a/b)^-n * (a/b)^n= 1
(a/b)^n is multiplicative inverse of (a/b)^-n
example
1) (2/3)^-2* (3/2)^2=1
2) (1/5)^-3* (1/5)^3 =1
3) (7)^-5* (7)^5=1
4) (-13/6)^-9*(-13/6)^9 =1
5) (5/2)^-4*(5/2)^4=1
Similar questions