Physics, asked by 098838, 4 months ago

explain it correctly​

Attachments:

Answers

Answered by BrainlyEmpire
63

  • Three colinear points need the same slope.
  • We get two slopes from the given points.

\boxed{\sf{Slope\;of\;(2,\;5)\;and\;(8,\;8)}}

\sf{\implies \dfrac{\Delta y}{\Delta x} =\dfrac{8-5}{8-2} =\dfrac{3}{6} }

\sf{\therefore \dfrac{\Delta y}{\Delta x} =\dfrac{1}{2} }

\boxed{\sf{Slope\;of\;(4,\;k)\;and\;(8,\;8)}}

\sf{\implies \dfrac{\Delta y}{\Delta x} =\dfrac{8-k}{8-4} }

\sf{\therefore \dfrac{\Delta y}{\Delta x} =\dfrac{8-k}{4} }

Hence we get an equation for one variable.

Two slopes need to be equal.

\sf{\implies \dfrac{8-k}{4} =\dfrac{1}{2} }

\sf{\implies 8-k=4}

\sf{\therefore k=4}

Side note:-

  • I've attached the reasoning of the slope approach. I approached with the slope, but you can find the solution based on the triangle area formula. H
Attachments:
Answered by Anonymous
2

Three colinear points need the same slope.

We get two slopes from the given points.

\boxed\red{\sf{Slope\;of\;(2,\;5)\;and\;(8,\;8)}}

\sf\red{\implies \dfrac{\Delta y}{\Delta x} =\dfrac{8-5}{8-2} =\dfrac{3}{6} }

\sf\red{\therefore \dfrac{\Delta y}{\Delta x} =\dfrac{1}{2} }

\boxed\red{\sf{Slope\;of\;(4,\;k)\;and\;(8,\;8)}}

\sf\red{\implies \dfrac{\Delta y}{\Delta x} =\dfrac{8-k}{8-4} }

\sf\red{\therefore \dfrac{\Delta y}{\Delta x} =\dfrac{8-k}{4} }

Hence we get an equation for one variable.

Two slopes need to be equal.

\sf\red{\implies \dfrac{8-k}{4} =\dfrac{1}{2} }

\sf\red{\implies 8-k=4}

\sf\red{\therefore k=4}

Attachments:
Similar questions
Math, 2 months ago