Physics, asked by Anonymous, 1 year ago

explain it plzzzz....​

Attachments:

Answers

Answered by Anonymous
3

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\put(1,1.2){\line(1,0){6.5}}\end{picture}

❏ Question:-

Refer to the questioner attachment,

❏ Solution:-

let,

the distance at apogee =  r_a

the distance at perigee =  r_p

and the mass of the body = m

Now we know that ,

 \longrightarrow \boxed{r_a=a(1-e)}

 \longrightarrow \boxed{r_p=a(1+e)}

where ,

e = eccentricity of the semi major axis .

a = length of the semi major axis.

Now , from the conservation theorem of Angular momentum .

 \longrightarrow \text{Angular momentum at apogee}= \text{Angular momentum at perigee}

 \longrightarrow mV_ar_a=mV_pr_p

 \longrightarrow V_ar_a=V_pr_p

 \longrightarrow \dfrac{V_a}{V_p}=\dfrac{r_p}{r_a}

 \longrightarrow \dfrac{V_a}{V_p}=\dfrac{\cancel{a}(1-e)}{\cancel{a}(1+e)}

 \longrightarrow \boxed{\dfrac{V_a}{V_p}=\dfrac{(1-e)}{(1+e)}}

Now,

 \longrightarrow \dfrac{K.E._p}{E.K._a}=\dfrac{\dfrac{1}{2}m{V^2}_p}{\dfrac{1}{2}m{V^2}_a}

 \longrightarrow \dfrac{K.E._p}{E.K._a}=\dfrac{{V^2}_p}{{V^2}_a}

 \longrightarrow \dfrac{K.E._p}{E.K._a}=\dfrac{(1+e)^2}{(1-e)^2}

 \longrightarrow\large{\boxed{ \dfrac{K.E._p}{E.K._a}=\Big(\dfrac{1+e}{1-e}\Big)^2}}

Refer to the attachment.,

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\put(1,1.2){\line(1,0){6.5}}\end{picture}

Some Basic knowledge:-

Apogee =

  • Apogee is that point in a the elliptical orbit where the planet ( e.g, Earth) is at the farthest distance with respect to Sun .

perigee =

  • perigee is that point in a the elliptical orbit where the planet ( e.g, Earth) is at the nearest distance with respect to Sun .

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\put(1,1.2){\line(1,0){6.5}}\end{picture}

Attachments:
Similar questions