Math, asked by hana9999, 1 year ago

explain me with this calculus problem plz​

Attachments:

Answers

Answered by jitekumar4201
1

Answer:

I = 2(e^{\frac{x}{2} }+1) - 2log(e^{\frac{x}{2} }+1)

Step-by-step explanation:

We have-

I = \int {\dfrac{e^{x} }{e^{\frac{x}{2} }+1 } } \, dx

Put \ e^{\frac{x}{2} } +1 = t

e^{\frac{x}{2} } = (t-1)

Squaring on both sides

e^{x} = (t-1)^{2}

Diff. with respect to 'x'.

e^{x} dx = 2(t-1)^{2-1}dt

e^{x} dx = 2(t-1)dt

So, I = \int\ {\dfrac{2(t-1)}{(t-1)}+1 } \, dt

I = 2\int\ {\dfrac{t-1}{t} } \, dt

I = 2\int\ {[1 - \dfrac{1}{t} } \,] dx

I = 2\int\ {1} \, dt  - 2\int\ {\dfrac{1}{t} } \, dt

I = 2t - 2logt

but \ t = e^{\frac{x}{2} } + 1

So, I = 2(e^{\frac{x}{2} }+1) - 2log(e^{\frac{x}{2} }+1)

Similar questions