Explain nutrition in cud chewing herbivore animals
Answers
Answered by
0
Ruminants are mammals that are able to acquire nutrients from plant-based food by fermenting it in a specialized stomach prior to digestion, principally through microbial actions. The process, which takes place in the front part of the digestion system and therefore is called foregut fermentation, typically requires the fermented ingesta (known as cud) to be regurgitated and chewed again. The process of rechewing the cud to further break down plant matter and stimulate digestion is called rumination.The word "ruminant" comes from the Latin ruminare, which means "to chew over again".
Stylised illustration of a ruminant digestive systemAn impala swallowing and then regurgitating food – a behaviour known as "chewing the cud"
The roughly 200 species of living ruminants include both domestic and wild species.Ruminating mammals include cattle, goats, sheep, giraffes, yaks, deer, antelope, and some macropods (kangaroos). It has also been suggested that notoungulates also relied on rumination, as opposed to other atlantogenates that rely on the more typical hindgut fermentation, though this is not entirely certain.
Taxonomically, the suborder Ruminantia (also known as ruminants) is a lineage of herbivorous artiodactyls that includes the most advanced and widespread of the world's ungulates. The term 'ruminant' is not synonymous with Ruminantia.[citation needed]The suborder Ruminantia includes many ruminant species, but does not include tylopods and marsupials. The suborder Ruminantia includes six different families: Tragulidae, Giraffidae, Antilocapridae, Moschidae, Cervidae, and Bovidae.
Description
Different forms of the stomach in mammals. A, dog; B, Mus decumanus; C, Mus musculus; D, weasel; E, scheme of the ruminant stomach, the arrow with the dotted line showing the course taken by the food; F, human stomach. a, minor curvature; b, major curvature; c, cardiac end G, camel; H, Echidna aculeata. Cma, major curvature; Cmi, minor curvature. I, Bradypus tridactylus Du, duodenum; MB, coecal diverticulum; **, outgrowths of duodenum; †, reticulum; ††, rumen. A (in E and G), abomasum; Ca, cardiac division; O, psalterium; Oe, oesophagus; P, pylorus; R (to the right in E and to the left in G), rumen; R (to the left in E and to the right in G), reticulum; Sc, cardiac division; Sp, pyloric division; WZ, water-cells. (from Wiedersheim's Comparative Anatomy)Food digestion in the simple stomach of nonruminant animals versus ruminants
The primary difference between ruminants and nonruminants is that ruminants' stomachs have four compartments:
rumen—primary site of microbial fermentation
reticulum
omasum—receives chewed cud, and absorbs volatile fatty acids
abomasum—true stomach
The first two chambers are the rumen and the reticulum. These two compartments make up the fermentation vat, they are the major site of microbial activity. Fermentation is crucial to digestion because it breaks down complex carbohydrates, such as cellulose, and enables the animal to utilize them. Microbes function best in a warm, moist, anaerobic environment with a temperature range of 100 to 108 degrees F and a pH between 6.0 and 6.4. Without the help of microbes, ruminants would not be able to utilize nutrients fromu forages. The food is mixed with saliva and separates into layers of solid and liquid material. Solids clump together to form the cud or bolus.
The cud is then regurgitated and chewed to completely mix it with saliva and to break down the particle size. Smaller particle size allows for increased nutrient absorption. Fiber, especially cellulose and hemicellulose, is primarily broken down in these chambers by microbes (mostly bacteria, as well as some protozoa, fungi, and yeast) into the three volatile fatty acids (VFAs): acetic acid, propionic acid, and butyric acid. Protein and nonstructural carbohydrate (pectin, sugars, and starches) are also fermented. Saliva is very important because it provides liquid for the microbial population, recirculates nitrogen and minerals, and acts as a buffer for the rumen pH. The type of feed the animal consumes affects the amount of saliva that is produced.
Though the rumen and reticulum have different names, they have very similar tissue layers and textures, making it difficult to visually separate them. They also perform similar tasks. Together, these chambers are called the reticulorumen. The degraded digesta, which is now in the lower liquid part of the reticulorumen, then passes into the next chamber, the omasum. This chamber controls what is able to pass into the abomasum. It keeps the particle size as small as possible in order to pass into the abomasum. The omasum also absorbs volatile fatty acids and ammonia.
Stylised illustration of a ruminant digestive systemAn impala swallowing and then regurgitating food – a behaviour known as "chewing the cud"
The roughly 200 species of living ruminants include both domestic and wild species.Ruminating mammals include cattle, goats, sheep, giraffes, yaks, deer, antelope, and some macropods (kangaroos). It has also been suggested that notoungulates also relied on rumination, as opposed to other atlantogenates that rely on the more typical hindgut fermentation, though this is not entirely certain.
Taxonomically, the suborder Ruminantia (also known as ruminants) is a lineage of herbivorous artiodactyls that includes the most advanced and widespread of the world's ungulates. The term 'ruminant' is not synonymous with Ruminantia.[citation needed]The suborder Ruminantia includes many ruminant species, but does not include tylopods and marsupials. The suborder Ruminantia includes six different families: Tragulidae, Giraffidae, Antilocapridae, Moschidae, Cervidae, and Bovidae.
Description
Different forms of the stomach in mammals. A, dog; B, Mus decumanus; C, Mus musculus; D, weasel; E, scheme of the ruminant stomach, the arrow with the dotted line showing the course taken by the food; F, human stomach. a, minor curvature; b, major curvature; c, cardiac end G, camel; H, Echidna aculeata. Cma, major curvature; Cmi, minor curvature. I, Bradypus tridactylus Du, duodenum; MB, coecal diverticulum; **, outgrowths of duodenum; †, reticulum; ††, rumen. A (in E and G), abomasum; Ca, cardiac division; O, psalterium; Oe, oesophagus; P, pylorus; R (to the right in E and to the left in G), rumen; R (to the left in E and to the right in G), reticulum; Sc, cardiac division; Sp, pyloric division; WZ, water-cells. (from Wiedersheim's Comparative Anatomy)Food digestion in the simple stomach of nonruminant animals versus ruminants
The primary difference between ruminants and nonruminants is that ruminants' stomachs have four compartments:
rumen—primary site of microbial fermentation
reticulum
omasum—receives chewed cud, and absorbs volatile fatty acids
abomasum—true stomach
The first two chambers are the rumen and the reticulum. These two compartments make up the fermentation vat, they are the major site of microbial activity. Fermentation is crucial to digestion because it breaks down complex carbohydrates, such as cellulose, and enables the animal to utilize them. Microbes function best in a warm, moist, anaerobic environment with a temperature range of 100 to 108 degrees F and a pH between 6.0 and 6.4. Without the help of microbes, ruminants would not be able to utilize nutrients fromu forages. The food is mixed with saliva and separates into layers of solid and liquid material. Solids clump together to form the cud or bolus.
The cud is then regurgitated and chewed to completely mix it with saliva and to break down the particle size. Smaller particle size allows for increased nutrient absorption. Fiber, especially cellulose and hemicellulose, is primarily broken down in these chambers by microbes (mostly bacteria, as well as some protozoa, fungi, and yeast) into the three volatile fatty acids (VFAs): acetic acid, propionic acid, and butyric acid. Protein and nonstructural carbohydrate (pectin, sugars, and starches) are also fermented. Saliva is very important because it provides liquid for the microbial population, recirculates nitrogen and minerals, and acts as a buffer for the rumen pH. The type of feed the animal consumes affects the amount of saliva that is produced.
Though the rumen and reticulum have different names, they have very similar tissue layers and textures, making it difficult to visually separate them. They also perform similar tasks. Together, these chambers are called the reticulorumen. The degraded digesta, which is now in the lower liquid part of the reticulorumen, then passes into the next chamber, the omasum. This chamber controls what is able to pass into the abomasum. It keeps the particle size as small as possible in order to pass into the abomasum. The omasum also absorbs volatile fatty acids and ammonia.
Similar questions