Explain power in AC circuits with suitable diagram.
Answers
Answered by
0
Electrical Power in an AC Circuit
In a DC circuit, the voltages and currents are generally constant, that is not varying with time as there is no sinusoidal waveform associated with the supply. However in an AC circuit, the instantaneous values of the voltage, current and therefore power are constantly changing being influenced by the supply. So we can not calculate the power in AC circuits in the same manner as we can in DC circuits, but we can still say that power (p) is equal to the voltage (v) times the amperes (i).
Another important point is that AC circuits contain reactance, so there is a power component as a result of the magnetic and/or electric fields created by the components. The result is that unlike a purely resistive component, this power is stored and then returned back to the supply as the sinusoidal waveform goes through one complete periodic cycle.
Thus, the average power absorbed by a circuit is the sum of the power stored and the power returned over one complete cycle. So a circuits average power consumption will be the average of the instantaneous power over one full cycle with the instantaneous power, pdefined as the multiplication of the instantaneous voltage, v by the instantaneous current, i. Note that as the sine function is periodic and continuous, the average power given over all time will be exactly the same as the average power given over a single cycle
In a DC circuit, the voltages and currents are generally constant, that is not varying with time as there is no sinusoidal waveform associated with the supply. However in an AC circuit, the instantaneous values of the voltage, current and therefore power are constantly changing being influenced by the supply. So we can not calculate the power in AC circuits in the same manner as we can in DC circuits, but we can still say that power (p) is equal to the voltage (v) times the amperes (i).
Another important point is that AC circuits contain reactance, so there is a power component as a result of the magnetic and/or electric fields created by the components. The result is that unlike a purely resistive component, this power is stored and then returned back to the supply as the sinusoidal waveform goes through one complete periodic cycle.
Thus, the average power absorbed by a circuit is the sum of the power stored and the power returned over one complete cycle. So a circuits average power consumption will be the average of the instantaneous power over one full cycle with the instantaneous power, pdefined as the multiplication of the instantaneous voltage, v by the instantaneous current, i. Note that as the sine function is periodic and continuous, the average power given over all time will be exactly the same as the average power given over a single cycle
Similar questions